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Résume :

Subspace clustering an extension of traditionallusteringthat seeks to find
clustersembedded in different subspaces within a dataset. This @stacplarly
important challenge with high dimensional data wherectivse of dimensionality
occurs. It also has the benefit of providing smaller desonmgt of the clusters
found.

In this field, we show that using probabilistic models preddnany advantages
over other existing methods. In particular, we show thatdiffecult problem of
the parameter settings of subspace clustering algoritam$e seen asraodel
selectionproblem in the framework of probabilistic models. It thubais us to
design a method that does not require any input parametartfre user.

We also point out the interest in allowing the clusters torkaye And finally, we
show that it is well suited for detecting the noise that maigter the data, and
that this helps to provide a more understandable reprdgantaf the clusters
found.

1 Introduction

Clusteringis a powerful exploration tool capable of uncovering presiy unknown
patterns in data (Berkhin, 200&ubspace clustering an extension of traditional clus-
tering that is based on the observation that diffectudters(groups of data points) may
exist in different subspaces within a dataset (see figureah agample). Subspace clus
tering is thus more general than classitesture selectioffor clustering because each
subspace may be local to each cluster, instead of global &f thlem.

This is a particularly important challenge with high dimemsl data where theurse
of dimensionalitycan degrad the quality of the results. Besides, it helps temealler
descriptions of the clusters found since clusters are difimefewer dimensions than
the original number of dimensions.

In this paper, we point out the interest in usipgbabilistic modeldor subspace
clustering. In particular, we show that the difficult prablef the parameter settings
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FiG. 1 — Example of four clusters embedded in different subspace

of subspace clustering algorithms can be seenrasael selectioproblem in the fra-
mework of probabilistic models. It thus allows us to propaseethod that does not
require any input parameter from the user. We also show tlmatiag the clusters to
overlap may be necessary in that field.

Moreover, the problem afoise detectiogan also naturally be included into the pro-
babilistic framework. Yet another contribution of this Wwas to tackle the problem of
providing interpretable results. And we will see that déterthe noise that may exist
in the data can help to provide more understandable regtittally, another advan-
tage of using probabilistic models is that it allows us taunalty mix different types of
attributes, under some specific assumptions.

The rest of the paper is organized as follows : in section 2 resgnt existing sub-
space clustering methods and discuss their performanceghen describe how to
adapt probabilistic models for subspace clustering angqs® a new algorithm cal-
led SUSEIn section 3; the results of our experiments, conducted tfical as well
as real datasets, and wheé8aSEis compared to other existing methods, are then re-
ported in section 4 ; finally, section 5 concludes the papérsaiggests topics for future
research.

2 Subspace clustering

The subspace clustering issue has been first introducedgragl et al,, 1998).
Many other methods emerged then, among which two familiesbeadistinguished
according to their subspace search method :

1. bottom-upsubspace search methods (Agraeighl, 1998; Chenget al, 1999;
Nagestet al,, 1999; Kailinget al,, 2004) seek to find clusters in subspaces of in-
creasing dimensionality, and produce as output a set afechuthat can overlap;

2. andtop-downsubspace search methods (Aggarethl., 1999; Woo & Lee,
2002; Yipet al, 2003; Sarafigt al., 2003; Domeniconeét al., 2004) us&k-means



like methods with original techniques of local feature selettend produce as
output a partition of the dataset.

In (Parson®t al, 2004), the authors have studied and compared these meftms
point out that every method requires input parameters diffio set for the user, and
that influence the results (density threshold, mean nunfiyetevant dimensions of the
clusters, minimal distance between clusters, etc.).

Besides, the existing methods do not tackle the problem ofllivegy the noise that
may exist in the data. And no proposition was made for pratpan interpretable out-
put, although being understandable in the field of clusteisran important challenge.
Yet we will see that the noise detection may also help to plewnore understandable
results. Moreover, although a proposition was made to rategcategorical attributes
in bottom-upapproaches, all experiments were conducted on numeritzabddy.

Finally, let us present a case where both types of existinthods behave badly
compared to what we should expect from subspace clustdgogtams. It is the case
for the data in figure 2, where one cluster is defined on onembina and takes random
values on another one, and conversely for the other cluster.
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FIG. 2 — A case where existing subspace clustering methods bdizally contrary to
methods based on probabilistic models.

In such a case, fdvottom-upsubspace search methods, all points belong to the same
cluster because they form a continuous zone. These methsiteind to describe data
like these as a unique 2D-space cluster instead of as a pab-@pace clusters. It
then becomes worse with many dimensions. Converselk-foeans likanethods, as
intersections are not allowed, the two clusters may not tseeved. On the other hand,
methods based on probabilistic models and the EM algoritfen¥( Spetsakis, 2003)
are able to identify the two clusters.

However, it is well known that the methods based on probsthilimodels and the
EM algorithm may be slow to converge. Moreover, it would beriasting to adapt such
methods to subspace clustering, by designing a model aiemtify the subspaces in
which each cluster is embedded. Finally, it would also berggting to use a model able
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to handle different types of attributes, and to provide derjsretable output.

In the next section, we present such a new statistical sebsgiastering algorithm
calledSuSE. This algorithm belongs to the family aébp-downsubspace search me-
thods. We will show that assuming that the data values follmlgpendent distributions
on each dimension helps to resolve many issues we have prdsAnd we will see the
interest in using such statistical approach, in particilarder to resolve the difficult
problem of parameter settings.

3 Algorithm SuSE

Let us first introduce some notations. We denote\byhe number of data points of
the input dataset andl/ the number of dimensions on which they are defined. These
dimensions can be numerical as well as categorical. We sapyadues on numerical
dimensions are normalized (so that all values belong to dmeesinterval). And we
denote byCategoriesy the set of all possible categories on a categorical dimankio
andF'requencesy the frequences of all these categories within the dataset.

3.1 Probabilistic model

The basis of our model is the classical mixture of probabtitstributionsg =
(64, ..., 05 ) where eacld;, is the vector of parameters associated withittiecluster to
be found, denoted b§;, (we set toK the total number of clusters).

Besides, we assume that the data values follow independgrbdtions on each
dimension. Thus, our model is less expressive than theicddsme that takes into
account the possible correlations between dimensionst Bilbws us to naturally mix
numerical and categorical dimensions. We will see thasit allows us to extract some
of the dimensions considered as more relevant to each cliBssides, the method
is thus faster than with the classical model because our hmaels less parameters
(O(M) instead ofO(M?)) and operations on matrices are avoided. And finally, it is
thus adapted to the presentation of the results as a seesf(fufpercubes in subspaces
of the original description space are easily understardiaplhumans) because each
dimension of each cluster is characterized independenatty bne another.

In our model, we suppose that the data follow gaussian ligians on numerical
dimensions and multinomial distributions on categori¢alehsions. So the model has
the following parameterg;, for each cluste;, : m; denotes its weighiyxq its mean
andoy, its standard deviation on the numerical dimensidnand F'regsiq the fre-
quences of each category on the categorical dimengions

Finally, in order to adapt the model for subspace clustemregadd the parametét
that indicates how many relevant dimensions to considghfoclusters. And we add to
the parameters of each clustég the set)M,, of size R, of the dimensions considered
as the most relevant to the cluster.

To make theséocal feature selectionsve first associate to each dimensibof each
clusterCy, a local weightiVy, that indicates its relevance to the cluster. These weights
are computed according to the shape of the distributioneo€hirster on the dimension.
For example for numerical dimensions, a high standard tewiavill induce a low



weight on the dimension whereas a low standard deviatidnndilice a high weight in
determining if a data point belongs to the correspondingtetu

So these weights are computed as follows. For numericalrtiiors, it is the ratio
between the local and the global standard deviation aqogtdi.;,. And for catego-
rical dimensions, it is the relative frequence of the mosbpble category.

1= % With 32, = % 32 (Xia — pra)? if d numerical
kd

Wia =

Freqgsiq(cat)— Frequencesq(cat)
1—Frequencesg(cat)

with cat = Argmaz{cecategories,} Freqsra(c)

if d categorical

So the weightV,; reflects the capability of the dimensidno discriminate between
the data points that belong to the specific clustgrand the other ones. And the
dimensions of highest weights, that correspond to the nebsvant dimensions of the
clusterCy, can be selected.

By this model, we set that all the clusters have the same nuaflrelevant dimen-
sions, although the dimensions selected for each clustgrbmalifferent. If it is not
the case, then some irrelevant dimensions may be selectsohiny clusters. However,
the influence of such irrelevant dimensions would be lowantthe one of the relevant
dimensions.

3.2 EM algorithm

Given a setD of N data pointsX;, Maximum Likelihood Estimatiois used to es-
timate the model parameters that best fit the data. To dottlé&M algorithmis an
effective two-step process that seeks to optimizddhdikelihoodof the modeb ac-
cording to the datasé®, LL(6|D) = >, log P()_(;|9).

1. E-step Expectatiol : find the class probability of each data point according to
the current model parameters.

2. M-step Maximizatior) : update the model parameters according to the new class
probabilities.

These two steps iterate until a stopping criterion is redc@éassicaly, it stops when
LL(0|D) increases less than a small positive considrmm one iteration to another.
The E-step consists in computing the membership probgbilieach data poinf;
to each cluste€, with parametergy. In our case, the dimensions are assumed to be
independent, and each cluster has its own set of relevamingdiions\/;,. So the mem-
bership probability of a data point to a cluster is the pradfimembership probabilities
on each dimension considered as relevant for the clustsid8g to avoid that a pro-
bability equal to zero on one dimension cancels the globabaility, we use a very
small positive constarst

p()_(;wk) = H max(P(Xiq|0ka), €)
de My,



AN 2UVO

2
_1 (Xid“kd>
2 Tkd . .
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P(Xial0ka) = { Virora

K
P(Xil) =D me x P(Xil6r)
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Then the M-step consists in updating the model parameteos@iag to the new class
probabilities as follows :

P(0,]X;) =

1 —
= 5 2 PO:/X0)
_ > Xia x P(0k|X7)
Hhd = 5 P(64IX)

>, P60 X (Xiqg — pord)?
Tk = prm

Z{lled:Cat} P(Gk )T;)
>, P(0x[x0)
In order to cope with the problem of slow convergence withdlzssical EM algo-
rithm, the followingk-means likestopping criterion can be used : stop whenever the
membership of each data point to their most probable claktes not change. To do
this, we introduce a new view on each clusigr, corresponding to the set of data points
that belong toit :

Freqsga(cat) = Y cat € Categoriesy

S = {Xi|Argmaz!S, P(Xi|0;) = k}

The set of allS,, thus defines a partition on the dataset. However, as we disdesrlier
on the example of figure 2, this ability to provide a partitmmthe object space does
not prevent us from considering clusters that may overlafhenlescription space.

And finally, to cope with the problem of sensitivity to the etmof the initial solution,
we run the algorithm many times with random initial solus@and keep the model that
optimizes thdog-likelihood LL(6|D).

3.3 Model selection

At this stage, our algorithm needs two input parameters ntimberk of clusters to
be found, and the numbé? of dimensions to be selected for each cluster. An important
advantage of using a probabilistic model over other exgstirethods is that finding



the most appropriate values of these two parameters carebeasea model selection
problem.

So we can for example use tlBH C criterion (Ye & Spetsakis, 2003) that consists in
adding to the log-likelihood of the model to the data a terat ffenalizes more complex
models. It thus tries to find a compromise between the fit ohtbeel to the data, and
the complexity of the model used.

BIC(6|D) = —2 x LL(6|D) + My x log N

My represents the number of independent parameters of the mode

s 2 if d numerical
My=3_ 3. { |Categoriesy| if d categorical
k=1deM,
BIC criterion must be minimized to optimize the likelihood oétmodel to the data.
So to find the model that best fit the data, we consider difteredels with different
values for the parametefs and R, and the model that minimizes the/C value is
kept.

Contrary to the other existing subspace clustering methedshus propose a way
to automatically find the most appropriate values for the ehpdrameters. We thus do
not need the user to provide any prior knowledge. The relvanthis method will be
studied in the next section.

Finally, another advantage of using probabilistic modelssubspace clustering is
that detecting the noise that may exist in the data can beaigtintegrated into the
method, by adding a uniform cluster into the model. Morepwerwill see in the next
section that handling the noise can also help to get morerstaatelable results.

4 Experiments

Experiments were conducted on artificial as well as realsgésa The first ones are
used to observe the evolution of the BIC value according éorthmber of clusters
expected and the number of dimensions selected for eadiercl\M¢e also use artificial
datasets to observe the robustnesSoEE faced with different types of datasets, in
particular datasets containing noise. Then experimentealndatasets are conducted
according to the methodology proposed in (Candikieal., 2005), and thus show the
effectiveness of our method on real-life data.

In order to compare our method with existing ones, we conthegde experiments
on numerical-only datasets. Three other clustering dlgms are used in these experi-
ments :

— K-means, the well-known full-space clustering algorithased on the evolution of

K centroids that represent the K clusters to be found.

— LAC (Domeniconiet al, 2004), an effectiveaop-down likesubspace clustering
method that is based on K-means and associates with eaaloidemtvector of
weights on each dimension. At each step and for each clubtse weights on
each dimension are updated according to the dispersioneomégmbers of the
cluster on the dimension (the greater the dispersion, seethe weight).
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— And EMI refers to clustering by learning a mixture of gaassiwith the EM algo-
rithm under the independence assumption on the dimengdansyithout perfor-
ming local feature selection as is done®ySE.

4.1 Artificial datasets

Artificial datasets are generated according to the follgvpiarametersN the number
of data points in the dataset/ the number of (humerical) dimensions on which they
are defined/. the number of clustersp the mean dimensionality of the subspaces on
which the clusters are defineflpD,,, and S D), the minimum and maximum standard
deviation of the coordinates of the data points that belong same cluster, from its
centroid and on its relevant dimensions.

L random data points are chosen on Miedimensional description space and used as
seeds of thé clusterg (1, ..., C1) to be generated. Let us denote then{@, s (TL)).
With each cluster is associated a subset ofth@ata points and a subset (of size close
to m) of the M dimensions that will define its specific subspace. Then tioedinates
of the data points that belong to a clust@r are generated according to a normal dis-
tribution with meanOy,q and standard deviatiosiyy € [SD,,..SDxs] on its specific
dimensionsi. They are generated uniformly between 0 and 100 on the othesrd
sions.

For all experiments, 100 artificial datasets are generatddM varying between 50
and 300,M between 10 and 50, between 2 and 5n between 3 and 16 D,,, = 3
and SDj; = 9. Then averages on the expected measures over the varialgsatre
computed.

Our first experiments concern the evolution of the BIC valemoading to the number
R of relevant dimensions selected for each cluster, when timber K of clusters
expected is provided. Figure 3 shows such a curve, and thasspmut that the BIC
value decreases unfit reachesn, and then increases. So it experimentally shows that
the BIC criterion can be used to automatically determinentlost appropriate number
of relevant dimensions for each cluster.

Similarly, figure 4 shows the 3D plot of the BIC value accoglin the numbers
of clusters to be found, and the numbRrof relevant dimensions selected for each
cluster. For a better visualization of the results, -BlCeigarted instead of BIC. It thus
experimentally points out that the optimum BIC value is reatwhenk reaches.
andR reachesn.

4.2 Noisy datasets

We also conducted experiments on artificial datasets torebsee robustness of our
method to noise. Figure 5 shows the results obtained withtbowt taking into account
the noise that may exist in the data. In this example, we sael#tecting the noise leads
to more understandable results.

Figure 6 then shows the resistanceé&ofSEto noise, compared to EMI and LAC. The
accuracy of the partition is measured by the average pufitieoclusters (the purity
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FiG. 5 — Example of the interest of the noise detection.



of a cluster is the maximum percentage of data points thainigeio the same initial
concept).
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FIG. 6 — Purity of the partition according to the percentage aé&t the dataset.

We can thus observe th&uSE is more robust to noise than EMI and LAC. Our
method is also robust to missing values. When summing ovireatiata values on one
dimension, the only thing to do is to ignore the missing value

Let us finally note that our method is still robust even if thetadare generated by
uniform distributions inside given intervals on the relevdimensions of the clusters,
instead of normal distributions.

4.3 Real datasets

We also conducted various experiments on real datasdtsyfoy the methodology
proposed in (Candillieet al., 2005) that consists in :

1. performing a supervised learning on a given dataset vagsses information

2. performing a supervised learning on the same datasehewrivith the informa-
tion coming from the clustering algorithm to be evaluated
— perform a clustering without using the classes infornmatio
— create new attributes from these results
— add these new attributes to the dataset
— and perform the supervised learning on the enriched datase

3. and comparing the classification errors of both methods

Thus, if the results of the supervised learning algorithe imrproved when some
extra-knowledge is added from the clustering process,wWeconjecture that it means
that the clustering process managed to capture some newngédmand useful infor-
mation. And the decrease of the error rate of the supervisgtiod when it is helped
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by the information coming from the clustering allows us tantify the interest of the
clustering algorithm.

One way of creating new attributes from the results of a ehirsg is for example
to add to each data point an identifier of the cluster it bedoiog We could also add
to each data point a set of attributes referring to the cenftdére cluster it belongs to.
In these experiments, we use C4.5 (Quinlan, 1993) as the\dspe algorithm, but it
has been experimented in (Candilledral., 2005) that the results do not depend on the
supervised algorithm used.

To evaluate the improvement in the results of C4.5 with ohauit the new informa-
tion coming from the clustering process, we test both metlwrdvarious independent
datasets coming from the UCI Machine Learning RepositofgK8 & Merz, 1998).
On each dataset, we perform five 2-fold cross-validatiosgraposed in (Dietterich,
1998). For each 2-fold cross-validation, we compute tharzdd error rates of both
methods.

Table 1 reports the error rates of C4.5 on the initial datas®td on the datasets
enriched with the corresponding clustering algorithmsndRes a random clustering
that is used as a reference.

C45 | C45 C4.5 C4.5 C4.5 C4.5

alone| + Rand| + K-means| + LAC | + EMI | + SUSE
ecoli | 48,5 48.3 42.8 40.3 42 43
glass | 32.6 40.8 35.7 37 40.4 35.8
image| 4.8 6 4.8 4.6 4.6 4.2
iono | 14.1 15.8 14.2 13.1 9.8 10.9

iris 7.3 7.9 6.7 3.7 5.1 4.8

pima 31 35 32.1 32.1 30.8 30.5
sonar| 31 35.2 30 28.8 28.8 27.4
vowel | 29.5 385 25 26.4 24.1 23.7
wdbc | 5.9 6.8 4.6 3.9 5.1 3.8
wine 8.7 8.8 10.4 9.6 2.7 4.1

TAaB. 1 — Balanced error rates (in %) of C4.5 enriched by clusgeailgorithms. The
bold values correspond to the minimum error rates obtaimezboh dataset.

From this table, we can already observe that most of the tineeresults of C4.5 are
improved when some information coming from real clustertgprithms are added,
whereas adding information from a random clustering degtiae results. Besides, we
see that the results of the methods based on the use of plisti@lonodels are often
better than those of K-means based methods.

Then four measures are used to compare the results of C4& aith those of C4.5
helped with the corresponding clustering algorithms :

— nb wins: the number of wins of each method

— sign wins: the number of significant wins, using the 2cv F-tesi{Alpaydin, 1999)

to check if the results are significantly different



— wilcoxon: the wilcoxon signed rank test, that indicates if a methalgsificantly
better than another one on a set of independent problents dlue is above 1.96)

— andav perf: the mean balanced error rate (in %)

Table 2 shows the results of such an evaluation. The firshmolconcerns the mea-
sures obtained using C4.5 on the initial dataset, the secoludnn using C4.5 on the
dataset enriched with information coming from the randoosigring, and the next
ones using C4.5 on the dataset enriched with informationimgfnom the correspon-
ding clustering algorithm.

C45| C45 C4.5 C45 | C45 C4.5
alone| + Rand| + K-means| + LAC | + EMI | + SUSE
nb wins - 1/9 5/4 713 9/1 9/1
signwins| - 0/1 0/0 1/0 2/0 3/0
wilcoxon - -2.67 -0.05 1.31 1.83 2.36
avperf | 21.3 | 24.3 20.6 20 19.3 18.8

TAB. 2 — Comparison of C4.5 alone with C4.5 enriched by clusteaigorithms.

It thus shows thaBuSEis the only clustering algorithm among the ones tested here
that significantly helps C4.5 improve its results, accogdimthe wilcoxon signed rank
test. It is significantly better on 3 datasets according édbth2cv F-test But asSUSE,

EMI improves the results of C4.5 nine times over ten, cogttarK-means and LAC.
All algorithms improve the results of C4.5 on average, extieprandom clustering.

5 Conclusion

We have shown in this paper the interest in using probaibilisbdels for subspace
clustering. Indeed, we have seen that it allows us to tramstbe difficult problem of
the parameter settings into a model selection problem adhth most appropriate num-
ber of relevant dimensions to consider for each cluster eatelbbermined automatically,
instead of requiring the user to specify it, as is done by thersubspace clustering
methods. Besides, we have also shown the interest in aliptivenclusters to overlap in
that field.

We have also pointed out the interest in assuming that tre\ddies follow inde-
pendent distributions on each dimension. Indeed, it aliesv® speed up the algorithm,
to naturally mix different types of attributes, and to pa&ian understandable result as
a set of rules. However, in the case where correlations legtwlenensions exist, our
method does not provide irrelevant results. Instead, inysases, it points out the cor-
relations by generating clusters along the axes defineddgdtrelations. An example
of such results is presented in figure 7.

The experiments we conducted on artificial datasets poouethe robustness of our
method to noise. Moreover, we have seen that detecting ike n@y help to get more
understandable results. Then experiments on real dafaseted out the relevance of
using probabilistic models for subspace clustering. Iiipalar, methods based on the
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Fic. 7 — Results oBuSEwhen a correlation between dimensions exists.

use of probabilistic models have been shown to outperformé&ns based methods.
And more specificallySuSEhas been shown to outperform EMI, thus pointing out the
relevance of our proposed method for selecting the mostgpiaite number of relevant
dimensions.

To continue our investigations in that field, we could nowaact more experiments
and compare our method with many others, on many other &tifiod real datasets.
Finally, we could also study more in detail how to design ditieht way to reach the
optimum BIC value, referring to the most appropriate nundferiusters and number
of relevant dimensions to be considered.
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