The Negation of Events

Pascal Amsili
Université Paris Diderot \&
Universidade Federal de São Carlos

UFSCar, oct. 2014

Overview

The Negation of Events

Observations

and arguments

Introduction

Complete
Proposal
Conclusion \&
Perspectives
References

Overview

The Negation of Events

Pascal Amsili

Introduction
Observations
and arguments

Introduction

Observations and arguments

Overview

The Negation of Events

Pascal Amsili

Introduction

Observations and arguments

Complete Proposal

Overview

Introduction

Observations and arguments

Complete Proposal

Conclusion \& Perspectives

Overview

The Negation of Events

Pascal Amsili

Introduction
Davidson
Initial Problem 1
Initial Problem 2
Reification
Discussion
Parsons
Kamp\&Reyle
The question
Observations
and arguments

Time Representation

(1) a. Jones loves a woman.
b. $\quad \exists x \operatorname{woman}(x) \wedge \operatorname{love}(j, x)$

introduction

Davidson
Initial Problem 1
Initial Problem 2
Reification
Discussion
Parsons
Kamp\&Reyle
The question
Observations and arguments

Complete
Proposal
Conclusion \&
Perspectives
References

Time Representation

The Negation of Events
(1) a. Jones loves a woman.
b. $\quad \exists x \operatorname{woman}(x) \wedge \operatorname{love}(j, x)$
would equally represent
(2) a. Jones loved a woman.
b. Jones will love a woman.

ntroduction

Davidson
Initial Problem 1
Initial Problem 2
Reification
Discussion
Parsons
Kamp\&Reyle
The question

Time Representation

The Negation of Events
(1) a. Jones loves a woman.
b. $\quad \exists x \operatorname{woman}(x) \wedge \operatorname{love}(j, x)$
would equally represent
(2) a. Jones loved a woman.
b. Jones will love a woman.
as well as
(3) a. Jones used to love a woman.
b. Jones was loving a woman.

Time Representation

The Negation of Events
(1) a. Jones loves a woman.
b. $\quad \exists x$ woman $(x) \wedge \operatorname{love}(j, x)$
would equally represent
(2) a. Jones loved a woman.
b. Jones will love a woman.
as well as
(3) a. Jones used to love a woman.
b. Jones was loving a woman.

Yet we want (4) not to be contradictory.
(4) Jones loved a women and he doesn't love a woman.

Time Representation: temporal logic

Variant of modal logic: propositional operators \& accessibility relation between worlds

ntroduction

Davidson
Initial Problem 1
Initial Problem 2
Reification
Discussion
Parsons
Kamp\&Reyle
The question

Time Representation: temporal logic

Variant of modal logic: propositional operators \& accessibility relation between worlds $P[\Psi]=$ there is a world w in the past s.t. $\Psi \in w$.
(5) a. Jones loved a woman.
b. $\quad P[\exists x$ woman $(x) \wedge$ love $(j, x)]$

Time Representation: temporal logic

Variant of modal logic: propositional operators \& accessibility relation between worlds $P[\Psi]=$ there is a world w in the past s.t. $\Psi \in w$.
(5) a. Jones loved a woman.
b. $\quad P[\exists x$ woman $(x) \wedge$ love $(j, x)]$
$P[\Psi]=$ there is a world w in the future s.t. $\Psi \in w$.
(6) a. Jones will love a woman.
b. $\quad F[\exists x$ woman $(x) \wedge \operatorname{love}(j, x)]$

Time Representation: temporal logic

Variant of modal logic: propositional operators \& accessibility relation between worlds $P[\Psi]=$ there is a world w in the past s.t. $\Psi \in w$.
(5) a. Jones loved a woman.
b. $\quad P[\exists x$ woman $(x) \wedge$ love $(j, x)]$
$P[\Psi]=$ there is a world w in the future s.t. $\Psi \in w$.
(6) a. Jones will love a woman.
b. $\quad F[\exists x$ woman $(x) \wedge \operatorname{love}(j, x)]$
(7) a. $P P[\Psi]$

Time Representation: temporal logic

Variant of modal logic: propositional operators \& accessibility relation between worlds $P[\Psi]=$ there is a world w in the past s.t. $\Psi \in w$.
(5) a. Jones loved a woman.
b. $\quad P[\exists x$ woman $(x) \wedge$ love $(j, x)]$
$P[\Psi]=$ there is a world w in the future s.t. $\Psi \in w$.
(6) a. Jones will love a woman.
b. $\quad F[\exists x$ woman $(x) \wedge$ love $(j, x)]$
(7) a. $P P[\Psi] \quad \approx$ pluperfect

Time Representation: temporal logic

Variant of modal logic: propositional operators \& accessibility relation between worlds $P[\Psi]=$ there is a world w in the past s.t. $\Psi \in w$.
(5) a. Jones loved a woman.
b. $\quad P[\exists x$ woman $(x) \wedge$ love $(j, x)]$
$P[\Psi]=$ there is a world w in the future s.t. $\Psi \in w$.
(6) a. Jones will love a woman.
b. $\quad F[\exists x$ woman $(x) \wedge \operatorname{love}(j, x)]$
(7) a. $P P[\Psi]$
\approx pluperfect
b. $\quad F P[\Psi]$

Time Representation: temporal logic

Variant of modal logic: propositional operators \& accessibility relation between worlds $P[\Psi]=$ there is a world w in the past s.t. $\Psi \in w$.
(5) a. Jones loved a woman.
b. $\quad P[\exists x$ woman $(x) \wedge$ love $(j, x)]$
$P[\Psi]=$ there is a world w in the future s.t. $\Psi \in w$.
(6) a. Jones will love a woman.
b. $\quad F[\exists x$ woman $(x) \wedge$ love $(j, x)]$
(7) a. $P P[\Psi]$
b. $\quad F P[\Psi]$
\approx pluperfect
\approx past in the future

Time Representation: temporal logic

Variant of modal logic: propositional operators \& accessibility relation between worlds $P[\Psi]=$ there is a world w in the past s.t. $\Psi \in w$.
(5) a. Jones loved a woman.
b. $\quad P[\exists x$ woman $(x) \wedge$ love $(j, x)]$
$P[\Psi]=$ there is a world w in the future s.t. $\Psi \in w$.
(6) a. Jones will love a woman.
b. $\quad F[\exists x$ woman $(x) \wedge \operatorname{love}(j, x)]$
(7) a. $P P[\Psi]$
b. $\quad F P[\Psi]$
\approx pluperfect
c. PFFPPFP $[\Psi]$

Time Representation: temporal logic

Variant of modal logic: propositional operators \& accessibility relation between worlds $P[\Psi]=$ there is a world w in the past s.t. $\Psi \in w$.
(5) a. Jones loved a woman.
b. $\quad P[\exists x$ woman $(x) \wedge$ love $(j, x)]$
$P[\Psi]=$ there is a world w in the future s.t. $\Psi \in w$.
(6) a. Jones will love a woman.
b. $\quad F[\exists x$ woman $(x) \wedge \operatorname{love}(j, x)]$
(7) a. $P P[\Psi]$
b. $\quad F P[\Psi]$
\approx pluperfect
c. $P F F P P F P[\Psi]$
\approx past in the future
???

Time Representation: temporal logic

Variant of modal logic: propositional operators \& accessibility relation between worlds $P[\Psi]=$ there is a world w in the past s.t. $\Psi \in w$.
(5) a. Jones loved a woman.
b. $\quad P[\exists x$ woman $(x) \wedge$ love $(j, x)]$
$P[\Psi]=$ there is a world w in the future s.t. $\Psi \in w$.
(6) a. Jones will love a woman.
b. $\quad F[\exists x$ woman $(x) \wedge$ love $(j, x)]$
(7) a. $P P[\Psi]$
b. $\quad F P[\Psi]$
\approx pluperfect
c. PFFPPFP $[\Psi]$
\approx past in the future
???
(Kamp, 1979)
what about present tense? aspect?

Time Representation: temporalized predicates

- Predicates have one additional place for time
- Underspecified role of the time argument

Time Representation: second order formulae

(9) a. Jones loves a woman.
b. $\quad \exists t \quad t<n$ holds_at $(t,[\exists x \operatorname{woman}(x) \wedge \operatorname{love}(j, x)])$

- usual in $\mathrm{Al} / \mathrm{KR}$
- too powerfull (decidability issues)
- many meaning postulates needed

Polyadicity

The Negation of Events
(10) a. Jones buttered the toast
b. buttered (j, t)

Introduction

Davidson
Initial Problem 1
Initial Problem 2
Reification
Discussion
Parsons
Kamp\&Reyle
The question
Observations and arguments

Complete
Proposal
Conclusion \&
Perspectives
References

Polyadicity

The Negation of Events
(10) a. Jones buttered the toast
b. buttered (j, t)
(11) a. Jones buttered the toast in the bathroom with a knife at midnight
b. ???

Introduction

Davidson
Initial Problem 1
Initial Problem 2
Reification
Discussion

Parsons

Kamp\&Reyle
The question

Polyadicity

(10) a. Jones buttered the toast
b. buttered (j, t)
(11) a. Jones buttered the toast in the bathroom with a knife at midnight
b. ???

Kenny (1963) : $\operatorname{buttered}(j, t, b, k, m)$.

Polyadicity

The Negation of Events
(10) a. Jones buttered the toast
b. buttered (j, t)
(11) a. Jones buttered the toast in the bathroom with a knife at midnight
b. ???

Kenny (1963) : $\operatorname{buttered}(j, t, b, k, m)$.
But we want to have
$(11-a) \Rightarrow(10-a)$

Davidson
Initial Problem 1
Initial Problem 2
Reification
Discussion
Parsons
Kamp\&Reyle
The question

Polyadicity

(10) a. Jones buttered the toast
b. buttered (j, t)
(11) a. Jones buttered the toast in the bathroom with a knife at midnight
b. ???

Kenny (1963) : buttered (j, $t, b, k, m)$.
But we want to have as well as

$$
\begin{gathered}
(11-a) \Rightarrow(10-a) \\
(11-a) \Rightarrow(12)
\end{gathered}
$$

(12) a. Jones buttered the toast in the bathroom

$$
\text { buttered }(j, t, b)
$$

b. Jones buttered the toast with a knife $\operatorname{buttered}(j, t, k)$
c. Jones buttered the toast in the bathroom with a knife buttered (j, t, b, k)

Polyadicity II

Proposal (Kenny, 1963) : (10-a) shall be represented as a 5 -ary predicate. In other words, (10-a) is seen as an elliptic/underspecified version of (13).
(13) Jones buttered the toast somewhere with something at sometime.

Polyadicity II

Proposal (Kenny, 1963) : (10-a) shall be represented as a 5 -ary predicate. In other words, (10-a) is seen as an elliptic/underspecified version of (13).
(13) Jones buttered the toast somewhere with something at sometime.

Then the wanted inferences come through.

Polyadicity II

Proposal (Kenny, 1963) : (10-a) shall be represented as a 5 -ary predicate. In other words, (10-a) is seen as an elliptic/underspecified version of (13).
(13) Jones buttered the toast somewhere with something at sometime.

Then the wanted inferences come through.
But what do we do with (14)?
(Davidson, 1967)
(14) Jones buttered the toast in the bathroom with a knife at midnight by holding it between the toes of his left foot

Davidson's intuition

The Negation of Events

ntroduction

Davidson
Initial Problem 1 Initial Problem 2
Reification
Discussion
Parsons
Kamp\&Reyle
The question
Observations
and arguments
(15) a. I bought a house
b. $\quad \exists x \operatorname{house}(x)$

Complete
 Proposal

Conclusion \&
Perspectives
References

Davidson's intuition

The Negation of Events

ntroduction

Davidson
Initial Problem 1 Initial Problem 2
Reification
Discussion
Parsons
Kamp\&Reyle
The question
Observations
and arguments
Complete
Proposal
Conclusion \&
Perspectives
References

Davidson's intuition

The Negation of Events

ntroduction

Davidson
Initial Problem 1 Initial Problem 2
Reification
Discussion
Parsons
Kamp\&Reyle
The question

Davidson's intuition

The Negation of Events

ntroduction

Davidson
Initial Problem 1 Initial Problem 2

- Individuals
(15) a. I bought a house, it has three rooms, it is well-heated, and has 2 storeys
b. $\quad \exists x$ house $(x) \wedge 3$ _room $(x) \wedge$ well_heated (x) $\wedge 2$ _storey (x)

Davidson's intuition

Introduction

Davidson
Initial Problem 1

- Individuals
(15) a. I bought a house, it has three rooms, it is well-heated, and has 2 storeys
b. $\quad \exists x$ house $(x) \wedge 3 _$room $(x) \wedge$ well_heated (x)
$\wedge 2$ _storey (x)
Initial Problem 2
Reification
Discussion
Parsons
Kamp\&Reyle
The question
- (re)descriptions
- pronouns

Davidson's intuition

- Individuals
(15) a. I bought a house, it has three rooms, it is well-heated, and has 2 storeys
b. $\quad \exists x$ house $(x) \wedge 3 _$room $(x) \wedge$ well_heated (x) $\wedge 2$ _storey (x)
- (re)descriptions
- pronouns
- Events
(16) John did it slowly, deliberatly, in the bathroom, with a knife, at midnight. What he did was butter a piece of toast.

Reification of events

1. Action predicates have an additional, event, place (17).
2. Action sentences "have an existential quantifier binding the action[event] variable" (18). (Reichenbach, 1947)
(17) a. Kim kicked Sam.
b. $\quad \operatorname{kick}(k, s, e)$
(18) a. Kim kicked Sam.
b. $\quad \exists x_{e} \operatorname{kick}\left(k, s, x_{e}\right)$

Reification of events

1. Action predicates have an additional, event, place (17).
2. Action sentences "have an existential quantifier binding the action[event] variable" (18). (Reichenbach, 1947)
(17) a. Kim kicked Sam.
b. $\quad \operatorname{kick}(k, s, e)$
(18) a. Kim kicked Sam.
b. $\exists x_{e} \operatorname{kick}\left(k, s, x_{e}\right)$
(19) a. A man found a coin.
b. $\exists x \exists y \exists e \operatorname{man}(x) \wedge \operatorname{coin}(y) \wedge \operatorname{find}(x, y, e)$

Discussion

The Negation of Events

Pascal Amsili

introduction

Davidson
Initial Problem 1 Initial Problem 2

Reification

Discussion
Parsons
Kamp\&Reyle
The question
Observations and arguments

Complete
Proposal
Conclusion \&
Perspectives
References

Discussion

The Negation of Events

ntroduction

Davidson
Initial Problem 1 Initial Problem 2

Reification

Discussion
Parsons
Kamp\&Reyle
The question
Observations and arguments

Complete
Proposal
Conclusion \&
Perspectives
References

Discussion

The Negation of Events

ntroduction

Davidson
Initial Problem 1 Initial Problem 2

- Which predicates have an event-place ?
many
- What's a sentence denotation ?

Discussion

The Negation of Events

ntroduction

Davidson
Initial Problem 1 Initial Problem 2

Reification

Discussion

The Negation of Events

ntroduction

Davidson
Initial Problem 1 Initial Problem 2

- Which predicates have an event-place ?

$$
\begin{array}{r}
\text { many } \\
t \text {-no change }
\end{array}
$$

Discussion

The Negation of Events

Davidson
Initial Problem 1 Initial Problem 2

- Which predicates have an event-place ?

many

- What's a sentence denotation ?
t-no change
nominals (20)

Reification
Parsons
Kamp\&Reyle
The question

Discussion

The Negation of Events

- Which predicates have an event-place ?

many

- What's a sentence denotation ?
t-no change
nominals (20)
- Who denotes an event?
(20) a. \quad Caesar's death $\rrbracket=\iota x \operatorname{dead}(x, c)$
b. Caesar is dead : $\exists x \operatorname{dead}(x, c)$
\Rightarrow Syntax-semantics interface to be worked out.

Discussion: individuation of events

Individuation at its best requires sorts or kinds that give a principle for counting. But here again, events come out well enough: rings of the bell, major wars, eclipses of the moon, and performances of Lulu can be counted as easily as pencils, pots, and people. Problems can arise in either domain. The conclusion to be drawn, I think, is that the individuation of events poses no problems worse in principle than the problems posed by individuation of material objects; and there is as good reason to believe events exist.
(Davidson, 1985, p. 180)

Parsons' generalisation

The Negation of Events

Pascal Amsili
(21) $\exists x_{e} \operatorname{kick}\left(k, s, x_{e}\right)$

Introduction

Davidson
Initial Problem 1 Initial Problem 2
Reification
Discussion

Parsons

Kamp\&Reyle
The question
Observations and arguments

Complete
Proposal
Conclusion \&
Perspectives
References

Parsons' generalisation

(21) $\exists x_{e} \operatorname{kick}\left(k, s, x_{e}\right)$
(22) $\exists x_{e} \operatorname{kick}\left(x_{e}\right) \wedge \operatorname{agent}\left(x_{e}, k\right) \wedge \operatorname{patient}\left(x_{e}, s\right)$
(Parsons, 1990)

The Negation of Events

ntroduction

Davidson
Initial Problem 1 Initial Problem 2
Reification
Discussion
Parsons
Kamp\&Reyle
The question
Observations and arguments

Complete
Proposal
Conclusion \&
Perspectives
References

Parsons' generalisation

(21) $\exists x_{e} \operatorname{kick}\left(k, s, x_{e}\right)$
(22) $\exists x_{e} \operatorname{kick}\left(x_{e}\right) \wedge \operatorname{agent}\left(x_{e}, k\right) \wedge \operatorname{patient}\left(x_{e}, s\right)$
(Parsons, 1990)

- requires a richer lexicon, and an appropriate management of the syntax-semantics interface
- solves radically the polyadicity problems,
- and puts on a par arguments and adjuncts.

Parsons' generalisation

(21) $\exists x_{e} \operatorname{kick}\left(k, s, x_{e}\right)$
(22) $\exists x_{e} \operatorname{kick}\left(x_{e}\right) \wedge \operatorname{agent}\left(x_{e}, k\right) \wedge \operatorname{patient}\left(x_{e}, s\right)$
(Parsons, 1990)

- requires a richer lexicon, and an appropriate management of the syntax-semantics interface
- solves radically the polyadicity problems,
- and puts on a par arguments and adjuncts.
(23) $\exists x_{e} \operatorname{kick}\left(x_{e}\right) \wedge \operatorname{agent}\left(x_{e}, k\right)$

Parsons' generalisation

(21) $\exists x_{e} \operatorname{kick}\left(k, s, x_{e}\right)$
(22) $\exists x_{e} \operatorname{kick}\left(x_{e}\right) \wedge \operatorname{agent}\left(x_{e}, k\right) \wedge \operatorname{patient}\left(x_{e}, s\right)$
(Parsons, 1990)

- requires a richer lexicon, and an appropriate management of the syntax-semantics interface
- solves radically the polyadicity problems,
- and puts on a par arguments and adjuncts.
(23) $\exists x_{e} \operatorname{kick}\left(x_{e}\right) \wedge \operatorname{agent}\left(x_{e}, k\right)$ $\wedge \operatorname{patient}\left(x_{e}, s\right)$

Parsons' generalisation

(21) $\exists x_{e} \operatorname{kick}\left(k, s, x_{e}\right)$
(22) $\exists x_{e} \operatorname{kick}\left(x_{e}\right) \wedge \operatorname{agent}\left(x_{e}, k\right) \wedge \operatorname{patient}\left(x_{e}, s\right)$
(Parsons, 1990)

- requires a richer lexicon, and an appropriate management of the syntax-semantics interface
- solves radically the polyadicity problems,
- and puts on a par arguments and adjuncts.
(23) $\exists x_{e} \operatorname{kick}\left(x_{e}\right) \wedge \operatorname{agent}\left(x_{e}, k\right)$
$\wedge \operatorname{patient}\left(x_{e}, s\right)$
$\wedge a t\left(x_{e}, 8 h\right)$

Parsons' generalisation

(21) $\exists x_{e} \operatorname{kick}\left(k, s, x_{e}\right)$
(22) $\exists x_{e} \operatorname{kick}\left(x_{e}\right) \wedge \operatorname{agent}\left(x_{e}, k\right) \wedge \operatorname{patient}\left(x_{e}, s\right)$
(Parsons, 1990)

- requires a richer lexicon, and an appropriate management of the syntax-semantics interface
- solves radically the polyadicity problems,
- and puts on a par arguments and adjuncts.
(23) $\exists x_{e} \operatorname{kick}\left(x_{e}\right) \wedge \quad \operatorname{agent}\left(x_{e}, k\right)$
$\wedge \operatorname{patient}\left(x_{e}, s\right)$
$\wedge a t\left(x_{e}, 8 h\right)$
\wedge loc (x_{e}, in_front_of_the_house)

DRT I

"Realistic" approach to time \& event representation
The Negation of Events

Ontology:

DRT II

The Negation of Events
2. Introduction of explicit "time constants"

Ontology:

Davidson
Initial Problem 1 Initial Problem 2

Reification

Discussion
Parsons
Kamp\&Reyle
The question
Observations
and arguments
Complete
Proposal
Conclusion \&
Perspectives
References

DRT: time constants

The Negation of Events

Pascal Amsili
introduction
Davidson
Initial Problem 1
Initial Problem 2
Reification
Discussion
Parsons
Kamp\&Reyle
The question
Observations
and arguments
Complete
Proposal
Conclusion \&
Perspectives
References

DRT: time constants

The Negation of Events

Pascal Amsili

ntroduction

Davidson
Initial Problem 1 Initial Problem 2
Reification
Discussion
Parsons
Kamp\&Reyle
The question

DRT: time constants

The Negation of Events

ntroduction

Davidson
Initial Problem 1 Initial Problem 2
Reification
Discussion

Parsons

(24) Jones came at 8 .
(25) a. $\exists e(\operatorname{come}(j, e) \wedge \operatorname{at-eight}(e))$
b. $\exists e(\operatorname{come}(j, e) \wedge a t(e i g h t-o ' c l o c k, e))$

Kamp\&Reyle
The question

DRT: time constants

The Negation of Events

ntroduction

Davidson
Initial Problem 1 Initial Problem 2
Reification
Discussion

Parsons

(24) Jones came at 8 .
(25) a. $\exists e(\operatorname{come}(j, e) \wedge a t-\operatorname{eight}(e))$
b. $\exists e(\operatorname{come}(j, e) \wedge$ at $($ eight-o'clock, $e))$
c. $\exists e(\operatorname{come}(j, e) \wedge a t(t, e) \wedge t=8$-o'clock)

DRT: time constants

The Negation of Events

ntroduction

Davidson
Initial Problem 1 Initial Problem 2
Reification
Discussion

Parsons

(24) Jones came at 8.
(25) a. $\exists e(\operatorname{come}(j, e) \wedge a t-\operatorname{eight}(e))$
b. $\exists e(\operatorname{come}(j, e) \wedge$ at $($ eight-o'clock, $e))$
c. $\exists e(\operatorname{come}(j, e) \wedge a t(t, e) \wedge t=8$-o'clock)
t is a time constant

Kamp\&Reyle
The question

Behavior of negated sentences?

Compare

(26) a. Jones owns a car.
b. $\quad \exists x \operatorname{car}(x) \wedge \operatorname{own}(j, x)$
(27) a. Jones doesn't own a car.
b. $\quad \neg \exists x \operatorname{car}(x) \wedge \operatorname{own}(j, x)$

Introduction

Davidson
Initial Problem 1 Initial Problem 2
Reification
Discussion
Parsons
Kamp\&Reyle
The question

Behavior of negated sentences?

Compare
(26) a. Jones owns a car.
b. $\quad \exists x \operatorname{car}(x) \wedge \operatorname{own}(j, x)$
(27) a. Jones doesn't own a car.
b. $\quad \neg \exists x \operatorname{car}(x) \wedge \operatorname{own}(j, x)$

Introduction

Davidson
Initial Problem 1
Initial Problem 2
Reification
Discussion
Parsons
Kamp\&Reyle
The question
(29) a. Jones didn't fall.
b. $\quad \neg \exists x$ fall $(x) \wedge \operatorname{agent}(x, j)$

Too simple ??

Various observations suggested an alternative analysis:
(30) a. Jones didn't fall.
b. $\quad \exists x \operatorname{non-fall}(x) \wedge \operatorname{agent}(x, j)$

Questions:

- Nature of the new entity (normal event, normal state, special eventuality?)
- Structure of the representation
- Stx-sem interface
- Rôle of negation

Overview

The Negation of Events

Introduction

Observations and arguments
Anaphoric Reference
Causation Reports
Perception Reports
Event Containers
"Event Quantification"
Temporal Modification
Manner and other Modification
Reference Time \& Discourse
Temporal Subordinates

ntroduction

Observations and arguments

Anaphora
Causation
Perception
Containers
Quantification
Temp Adv
Manner Adv

Complete Proposal

Conclusion \& Perspectives
(31) a. John didn't know the answer to the problem. This lasted until the teacher did the solution on the board.
b. John did not ask Mary to dance at the party. It made her angry.
(de Swart, 1996)
(32) a. Susan's boyfriend has graduated. But Sally does not believe it.
b. He is a brute. His behaviour shows this quite clearly.
(Przepiórkowski, 1999, ex(4))

Causation Reports

(33) a. I kept the child awake by not turning out the light. (Higginbotham, 2000)
b. He didn't stop at the lights because he didn't notice them.
(34) a. The fact that John had a headache made him crabby.
b. John's crabbiness resulted in the fact that everyone avoided him.
(Asher, 1993)
(35) John's rude answering of the phone was caused by his fight with his wife.
\approx The fact that John answered in a rude manner was caused by...
\neq The rude phone-answering event was caused by
(Parsons, 1990)

Perception Reports

(36) The policeman saw Andrew not stop for the traffic light.
(van der Does, 1991)
(37) a. ? I saw Max not blink.
b. *Everybody could see the rain not fall.
(38) Everybody could see the president not singing the Marseillaise.
\Rightarrow Positive counterpart needed

Event containers

Container: predicate posing a type constraint on its argument(s) (Vendler, 1967)
(39) What happened next was that the consulate didn't give us our visa. (Horn, 1989)
(40) a. ? What happened next was that Mary didn't snore.
b. *What happened next was that John didn't run.
(41) a. What happened next was that John didn't find his keys.
b. What happened next was that no one answered correctly.
\Rightarrow Positive counterpart / expected event

Counting and Quantifiying over events

The Negation of Events

Counting and Quantifiying over events

(42) a. He often hasn't paid taxes.
b. He sometimes doesn't eat dinner. (de Swart, 1996)

Where is the quantifier ?
(43) a. John often/always comes by car.
b. $\quad \forall e \operatorname{come}(e, j) \rightarrow$ by_car (e)

Counting and Quantifiying over events

(42) a. He often hasn't paid taxes.
b. He sometimes doesn't eat dinner. (de Swart, 1996)

Where is the quantifier?
(43) a. John often/always comes by car.
b. $\quad \forall e \operatorname{come}(e, j) \rightarrow$ by_car (e)
c. John often/always falls.
d. $\forall e C(e) \rightarrow \exists e^{\prime}$ fall $(e, j) \wedge R\left(e, e^{\prime}\right)$

Counting and Quantifiying over events

(42) a. He often hasn't paid taxes.
b. He sometimes doesn't eat dinner. (de Swart, 1996)

Where is the quantifier ?
(43) a. John often/always comes by car.
b. $\quad \forall e \operatorname{come}(e, j) \rightarrow$ by_car (e)
c. John often/always falls.
d. $\forall e C(e) \rightarrow \exists e^{\prime}$ fall $(e, j) \wedge R\left(e, e^{\prime}\right)$
(44) a. John often doesn't pay taxes.
b. OFTe $C(e) \rightarrow \neg \exists e^{\prime}$ pay_taxes $\left(e^{\prime}, j\right) \wedge R\left(e, e^{\prime}\right)$

Counting and Quantifiying over events II

(45) Jones fell 3 times.
$\Rightarrow 3$ events
(46) In all his life, [John didn't come to a party he was invited to] twice. It was actually on the same evening. (Przepiórkowski, 1999)
(47) ?? In all his life, [John didn't sleep] twice.

Temporal Modification

(48) [John didn't play golf] until noon.(Higginbotham, 2000)
(49) [No one talked] for over two hours. (Asher, 1993)

Only temporal modification possible (see later). Assuming a negative eventuality is not necessary with usual assumptions about time representation:
(50) a. $\exists e e:$ no one talk $\wedge \operatorname{last}(e, 2 h)$
b. $\exists t \operatorname{length}(t, 2 h) \wedge \neg \exists e \exists x \operatorname{pers}(x) \wedge \operatorname{talk}(e, x) \wedge$ $a t(e, t)$

Manner and other modification

The Negation of Events

Pascal Amsili
(51) a. *John slowly didn't butter a piece of toast.
b. *[John didn't butter a piece of toast] with a knife. (Przepiórkowski, 1999)

Defining propertie of events according to Davidson (1967). Counter-exemple from Przepiórkowski (1999):
(52) wczorajsze nieoczekiwane nieuznanie praw Kowalskiego do tej yesterday.ADJ unexpected not-recognizing.PERF rights Kowalski's to this posesji
immovable property ...
'the [unexpected [not recognizing Kowalski's right to this immovable property] yesterday] caused

It's a nominal!

Reference time \& Discourse

The Negation of Events

- "Only events move forward reference time" (Kamp \& Reyle, 1993)
(53) Mary smiled at John. He didn't smile back. (de Swart \& Molendijk, 1999)
(54) a. Il rentra chez lui. Puis il téléphona à son ami. He came back home. Then he called his friend.
b. *II ne rentra pas chez lui. Puis il téléphona à son ami. He didn't come back home. Then he called his friend.
c. *II rentra chez lui. Puis il ne téléphona pas à son ami. He came back home. Then he didn't call his friend (Amsili \& Le Draoulec, 1998)

Temporal Subordination I

Temporal provide a reference through the introduction of an event.
(55) Max arrived (e_{1}) soon after Mary had fallen down (e_{2}).
(56) a. Après qu'il lui a répondu, elle est partie. After he answered her, she left
b. *Après qu'il ne lui a pas répondu, elle est partie. After he didn't answer her, she left
c. Quand il a perdu ses clés, il a appelé un taxi. When he lost his keys, he called a cab
d. *Quand il n'a pas trouvé ses clés, Marie est arrivée. When he didn't find his keys, Marie came

Temporal Subordination II

(57) a. *While no one died in the hospital, nurses where satisfied.
b. *While Mary didn't eat the cake, John washed the dishes.
c. *Pendant que Jean n'a pas invité Marie à danser, les autres se sont bien amusés. While Jean didn't ask Marie to dance, the others had much fun

- The constant t bears the durative predication in the for-examples
(58) a. Jane did not swim a mile for two hours.
b. No one died in the hospital for over two hours.
\Rightarrow Explains why the reference time needs an explicit mention

The Negation of Events

Temporal Subordination III

The Negation of Events
(59) a. ? Après que John ne fut pas venu à la fête, Eva se mit en colère. After John did not come to the party, Eva got angry
b. Après que, à minuit, John ne fut (toujours) pas venu à la fête, Eva se mit en colère.
After (that), at midnight, John (still) didn't come, Eva got angry
(60) a. * Nous avions l'habitude de nous retrouver à cet endroit. Puis il ne vint pas. We were used to meeting there. Then he didn't come.
b. Nous avions l'habitude de nous retrouver à cet endroit. Puis un jour, il ne vint pas. We were used to meeting there. Then, one day, he didn't come.

Overview

The Negation of Events

Pascal Amsili

Introduction

Observations

Complete Proposal
DRT-like proposal
Complementary state Facts availability

Conclusion \&
Perspectives

References

Conclusion \& Perspectives

DRT

- Principle: For a negated sentence, introduce:
- a location time t;
- a condition relating t with \mathbf{n} (TPpt) $[=$ or $<$];
- a condition saying that there is no event or state (of a certain type) which stands in the relation ' \subseteq ' or ' \bigcirc ' to t.

Stative negated sentences I

The Negation of Events
(62) a. On entendait du bruit. Jean entra avec précaution. One heard noise. John came in cautiously
b. On n'entendait pas de bruit. Jean entra avec précaution.
One didn't hear noise. John came in cautiously
(63) a. While Mary wasn't at home, John washed the dishes.
b. Quand il ne vivait pas avec nous, tout était plus simple.
When he didn't live with us, everything was simpler
... but ...
(64) a. Les gens ont bavardé jusqu'à ce que le soliste soit sur scène.
People have chatted until the soloist was on stage

Stative negated sentences II

The Negation of Events
b. *Le public est resté silencieux jusqu'à ce que le soliste ne soit pas sur scène. The audience stayed silent until the soloist wasn't on stage
c. Depuis qu'il l'aime, on ne le voit plus. Since he is in love with her, we don't see him any more
d. *Depuis qu'il ne l'aime pas, on le voit tous les jours. Since he is not in love with her, we see him everyday

Proposal : a state is indeed available, but through computation. States are closed under relative complementation
(Asher, 1993, p. 52)

Facts

The Negation of Events
(65) John did not ask Mary to dance at the party. It made her angry.
$=(31-b)$ (66) a. Le train n'arriva pas. Cela m'inquiéta beaucoup.
The train didn't arrive. It worried me very much a. Le train n'arriva pas. Cela m'inquiéta beaucoup.
The train didn't arrive. It worried me very much
b. Il ne trouva pas la réponse. Cela la déçut. He didn't find the answer. This disappointed her

- Parallelism with when-sentences
(67) Quand il n'est pas sorti au bout de 5 minutes, j'ai compris qu'un accident avait du se produire.
When he didn't come out after 5 minutes, I understood an accident had probably happened
\Rightarrow Discourse relation : response (Sandström, 1993)
- Propositionnal attitude verbs

The negative proposition is seen as a fact (Asher 93).

Overview

The Negation of Events

Pascal Amsili

Introduction
Observations
and arguments

Introduction

Complete Proposal

Conclusion \& Perspectives

Conclusion

- William of Ockham wins !
however. . .
- Linguistic issues
- Cross-linguistic variations
- Extrême variability of speakers judgments
- Interaction with pragmatics
- Nominals
- Representational issues
- Respective roles in discourse structure of \mathbf{t} and \mathbf{e} / \mathbf{s}.
(68) a. À huit heures (t$)$, son réveil sonna $\left(\mathrm{e}_{1}\right)$. Sa voisine frappa à la porte $\left(e_{2}\right) . \quad e_{1}<e_{2}$ At eight, his alarm clock rang. His neighbour knocked at the door
b. À huit heures (t), son réveil ne sonna pas. Sa voisine frappa à la porte (e_{2}). $\mathrm{t}<\mathrm{e}_{2}$ At eight, his alarm clock didn't ring.

References

The Negation of Events

Amsili, Pascal, \& Le Draoulec, Anne. 1998. An Account of Negated Sentences in the DRT Framework. Pages 3-17 of: Ginzburg, Jonathan, Khasidashvili, Zurab, Vogel, Carl, Levy, Jean-François, \& Vallduví, Enric (eds), The Tbilisi Symposium on Language, Logic and Computation: selected papers. CSLI Lecture Notes. Cambridge University Press.
Asher, Nicholas. 1993. Reference to Abstract Objects in Discourse. Kluwer Academic Publisher.
Davidson, Donald. 1967. The Logical Form of Action Sentences. Pages 81-95 of: Resher, Nicholas (ed), The Logic of Decision and Action. Pittsburgh University Press.
Davidson, Donald. 1985. The Individuation of Events. Pages 163-180 of: Davidson, Donald (ed), Essays on Actions and Events, 3rd edn. Oxford: Clarendon Press. [1969].
de Swart, Henriëtte. 1996. Meaning and use of not... until. Journal of Semantics, 13, 221-263.
de Swart, Henriëtte, \& Molendijk, Arie. 1999. Negation and the temporal structure of narrative discourse. Journal of Semantics, 16(1), 1-42.
Higginbotham, James. 2000. On events in linguistics semantics. In: Higginbotham, James, Pianesi, Fabio, \& Varzi, Achille C (eds), Speaking of Events. Oxford: Oxford University Press.
Horn, Laurence R. 1989. A Natural History of Negation. Chicago: The University of Chicago Press.
Kamp, Hans. 1979. Events, Instants and Temporal Reference. Pages 376-417 of: Bäuerle, R., Egli, U., \& Von Stechow, A. (eds), Semantics from Differents Points of view. Springer Verlag.

Kamp, Hans, \& Reyle, Uwe. 1993. From discourse to logic. Kluwer Academic Publisher.
Kenny, Anthony J. P. 1963. Action, Emotion and Will. London: Routledge and Kegan Paul.
Parsons, Terence. 1990. Events in the Semantics of English. A Study of Subatomic Semantics. Cambridge, MA: MIT Press.
Przepiórkowski, Adam. 1999. On Negative Eventualities, Negative Concord, and Negative yes/no Questions. Pages 237-254 of: Matthews, T., \& Strolovitch, D. (eds), Proceeding of Semantics and Linguistic Theory 9. Ithaca, NY: CLC Publications.
Reichenbach, Hans. 1947. Elements of symbolic logic. New York: McMillan.
Sandström, Görel. 1993. When-clauses and the temporal interpretation of narrative discourse. Ph.D. dissertation, University of Umeå.
van der Does, Jaap. 1991. A generalized quantifier logic for naked infinitives. Linguistics and Philosophy, 14(3), 241-294.
Vendler, Zeno. 1967. Linguistics and Philosophy. Ithaca, N.Y.: Cornel University Press.

Pascal Amsili

References

