Ex. 1
Propose a deterministic finite state automaton which recognizes all the words on Σ^{*} which start with the prefix $a b$, include the factor $c b a$, and do not end with $c(\Sigma=$ $\{a, b, c\}$).

Ex. 2
Propose a complete deterministic finite state automaton which recognizes all the words on Σ^{*} such that all c 's are before all b 's (if any), the number of c 's is odd (thus $\geqslant 1$) and the number of a 's is even, and b 's can occur only if they are not followed by a 's ($\Sigma=\{a, b, c\}$).

Ex. 3
Propose a deterministic finite state automaton which recognizes the language $\{w \in$ $\left.\Sigma^{*}\left|\exists u \in \overline{\Sigma^{*} \mid w=u u \&}\right| w \mid \leqslant 4\right\}$, with $\Sigma=\{a, b, c\}$. L is the set of all the words of length $\leqslant 4$ which are formed by the concatenation of two identical factors.

