Ex. 1
Propose a deterministic finite state automaton which recognizes all the words on Σ^{*} which start with the prefix $a b$, include the factor $c b a$, and do not end with c.
$\Sigma=\{a, b, c\}$

Answer \qquad

We may want to start with a non-deterministic version. The states from 1 to 3 deal with the prefix $a b$, the states 3 to 6 deal with the factor $c b a$ (which may not immediately follow the prefix), the last condition (not ending with c, which is equivalent to ending with either a or b) is dealt with by states 6 and 7 . Notice that since the factor $c b a$ doesn't end with c, a word ending with this factor should be accepted.

To get a deterministic version we have to deal with the only non-unary transition of the previous automaton $(\delta(3, c)=3$ or 4$)$.

Note: To make this automaton complete an additional state (《 well ») is necessary, as well as transitions to this state from states 1 and 2.

Ex. 2

Propose a complete deterministic finite state automaton which recognizes all the words on Σ^{*} such that all c 's are before all b 's (if any), the number of c 's is odd (thus $\geqslant 1$) and the number of a 's is even, and b 's can occur only if they are not followed by a 's ($\Sigma=\{a, b, c\}$).

Answer .
The conditions on accepted words are reformulated here:

1. all c 's before b 's
2. b 's not followed by a 's
3. odd number of c 's $(\geqslant 1)$
4. even number of a 's $(\geqslant 0)$

Conditions 1 and 2 together entail that only b 's can follow b 's. In other words, as soon as a b is read, only additional b 's can be read.
We can now focus on the two remaining conditions. There are exactly four different configurations depending on the evenness of the numbers of a 's and c 's, we associate a state to each of them, transitions can be defined accordingly. The only favorable situation corresponds to state 2 . The state number 6 is a "well" state, corresponding to all the cases where a occurs at the wrong place or either a or c occurs after a b was read.

a	c	state
even	even	1
even	odd	2
odd	even	3
odd	odd	4

Ex. 3
Propose a deterministic finite state automaton which recognizes the language L, the set of all the words of length $\leqslant 4$ which are formed by the concatenation of two identical factors $(\Sigma=\{a, b, c\})$.
$L=\left\{w \in \Sigma^{*}\left|\exists u \in \Sigma^{*}, w=u u \&\right| w \mid \leqslant 4\right\}$.

Answer
"Copy words" necessarily have an even number of letters, so we expect the language to contain $\varepsilon, 3$ two-letter words $(a a, b b, c c)$. All four-letter words will be formed out of two copies of one two-letter word. Since there are $9\left(3^{2}\right)$ different two-letter words in Σ^{*}, we end up with 9 four-letter words in L.
The most legible version is on the left, while a minimal version is on the right. Making those automata complete would lead to a large number of additional transitions going to a《well»state.

