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Formal definition

Def. 9 (Finite deterministic automaton (FDA))
A finite state deterministic automaton A is defined by :

A = hQ,⌃, q0,F , �i
Q is a finite set of states
⌃ is an alphabet
q0 is a distinguished state, the initial state,
F is a subset of Q, whose members are called

final/terminal states
� is a mapping fonction from Q ⇥ ⌃ to Q.

Notation �(q, a) = r .
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Example

Let us consider the (finite) language {aa, ab, abb, acba, accb}.
The following automaton recognizes this langage: hQ,⌃, q0,F , �i,
avec Q = {1, 2, 3, 4, 5, 6, 7}, ⌃ = {a, b, c}, q0 = 1, F = {3, 4}, and
� is thus defined:
� : (1,a) 7! 2

(2,a) 7! 3
(2,b) 7! 4
(2,c) 7! 5
(4,b) 7! 3
(5,b) 7! 6
(5,c) 7! 7
(6,a) 7! 3
(7,b) 7! 3

b
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Recognition

Recognition is defined as the existence of a sequence of states
defined in the following way. Such a sequence is called a path in
the automaton.

Def. 10 (Recognition)
A word a1a2...an is recognized/accepted by an automaton iff
there exists a sequence k0, k1, ..., kn of states such that:

k0 = q0
kn 2 F
8i 2 [1, n], �(ki�1, ai ) = ki
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Exercices

Let ⌃ = {a, b, c}. Give deterministic finite state automata that
accept the following languages:

1. The set of words with an even length.
2. The set of words where the number of occurrences of b is

divisible by 3.
3. The set of words ending with a b.
4. The set of words not ending with a b.
5. The set of words non empty not ending with a b.
6. The set of words comprising at least a b.
7. The set of words comprising at most a b.
8. The set of words comprising exactly one b.
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Answers
Université Paris Diderot – LI0636 – 13/14 Ch2. Automates

1 2 3 4

a,b,c

a,b,c

a,b,c

a,b,c

a,b,c

b

a,c

a,c b
b

a,c

a,c b

5 6 7 8

b

a,c

a,c b
b

a,c a,b,c
b

a,c a,c
b

a,c a,c

ListeCpxAFDC

31
Soit A = {a, b, c}. Donner des automates déterministes complets reconnaissant les lan-

gages suivants :
1. L’ensemble des mots contenant au moins un a et dont la première occurence de a

n’est pas suivie par un c.
2. L’ensemble des mots comportant au moins 3 lettres et dont la troisième lettre à

partir de la fin est un a ou un c.ListeCpxAFDC-Answer
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (p. 23) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Le premier est assez simple ; le second : seule méthode trouvée : passer par un automate
non déterministe (il vaut mieux qu’il ne soit pas complet), puis le déterminiser. Version
trouvée (à vérifier) :

a (et c) b
1 1,2 1

1,2 1,2,3 1,3
1,2,3 1,2,3,4 1,3,4

1,3 1,2,4 1,4
1,2,3,4 1,2,3,4 1,3,4

1,3,4 1,2,4 1,4
1,2,4 1,2,3 1,3

1,4 1,2 1exIntersection

32
Soit � = {a, b, c}.

1. Proposer un automate déterministe (pas nécessairement complet) qui reconnaît le
langage sur �⇤ de tous les mots qui commencent par c et se terminent par c.

2. Proposer un automate déterministe qui reconnaît tous les mots de �⇤ qui com-
prennent le motif abb⇤a.

3. Proposer un automate (pas nécessairement complet) qui reconnaît tous les mots de
�⇤ qui comprennent le motif abb⇤a et commencent et se terminent par c.exIntersection-Answer

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (p. 23) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Soit � = {a, b, c}.

1. Proposer un automate déterministe (pas nécessairement complet) qui reconnaît le langage
sur �⇤ de tous les mots qui commencent par c et se terminent par c.

25
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Ways of non-determinism

A word is recognized if there exists a path in the automaton. It is
not excluded however that there be several paths for one word: in
that case, the automaton is non deterministic.
What are the sources of non determinism?
I �(a, S1) = {S2, S3}
I “spontaneous transition” = "-transition
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Equivalence theorems

For any non-deterministic automaton, it is possible to design a
complete deterministic automaton that recognizes the same
language.
Proofs: algorithms (constructive proofs)
First “remove” "-transitions, then “remove” multiple transitions.
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Closure (1)

Regular languages are closed under various operations: if the
languages L and L0 are regular, so are:
I L [ L0 (union); L.L0 (product); L⇤ (Kleene star)

(rational operations)
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Union of regular languages: an example
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Rational operations
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Closure (2)

Regular languages are closed under various operations: if the
languages L and L0 are regular, so are:
I L [ L0 (union); L.L0 (product); L⇤ (Kleene star)

(rational operations)
! for every rational expression describing a language , there is
a FSA that recognizes L

and vice-versa
I L \ L0 (intersection); L (complement)
I . . .
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Intersection of regular languages

Algorithmic proof
Deterministic complete automata

L1 a b
! 1 2 4

2 4 3
 3 3 3

4 4 4

L2 a b
$ 1 2 5

2 5 3
3 4 5
4 1 4
5 5 5

L1 \ L2 a b
! (1,1) (2,2) (4,5)

(2,2) (4,5) (3,3)
(4,5) (4,5) (4,5)
(3,3) (3,4) (3,5)
(3,4) (3,1) (3,4)

 (3,1) (3,2) (3,4)
(3,2) (3,4) (3,3)
(3,5) (3,5) (3,5)
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Complement of a regular language

Deterministic complete automata

completed complemented
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Pumping lemma (intuition)

Take an automaton A with k states.
If L(A) is infinite,
then 9w 2 L(A), |w | � k .
Therefore, when accepting w , A goes through some state q at least
twice.
That means that there is a loop q

wi :j! q.
Repeating the loop any number of times (even 0) always produces
a word (w1:i�1 wi :j

n wj+1:|w |) in L(A).

Université Paris Diderot – LI3242 – 13/14 Ch1. Langages rationnels

état possible.

Déf. 5 (Automate fini déterministe - AFD)

Un automate à nombre fini d’états (automate fini) déterministe A est défini par :
A = hQ,�, q0, F, �i

Q est un ensemble fini d’états
� est un vocabulaire (ou alphabet)
q0 est un élément de Q, appelé état initial
F est un sous-ensemble de Q, dont les éléments sont appelés états terminaux
� est une fonction de Q⇥ � dans Q. On écrit �(q, a) = r.

Exemple Soit le langage (fini) {aa, ab, abb, acba, accb}.
On peut définir l’automate suivant, qui reconnaît ce langage : hQ,�, q0, F, �i,
avec Q = {1, 2, 3, 4, 5, 6, 7}, � = {a, b, c}, q0 = 1, F = {3, 4}, et � est définie ainsi :

� : (1,a) 7! 2
(2,a) 7! 3
(2,b) 7! 4
(2,c) 7! 5
(4,b) 7! 3
(5,b) 7! 6
(5,c) 7! 7
(6,a) 7! 3
(7,b) 7! 3

1 2 4 6 7

3

5

a b
b

a

c b c

a b

a b c
! 1 2

2 3 4 5
 3
 4 3

5 6 7
6 3
7 3

4
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Pumping lemma (definition)

Pumping Lemma
Let L be a regular language.
9k 2 N such that
8w 2 L such that |w | � k ,
9x , u, y such that w = xuy and that

1. |u| � 1;
2. |xu|  k ;
3. 8n 2 N, xuny 2 L.

! “L has the pumping property.”
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Is NL regular? Pumping lemma (example I)

a⇤bc (i.e. {anbc | n 2 N}) is regular (there is a DFA).
So, it must have the pumping property.

It happens that k = 3 works.
For example, w = abc 2 L is long enough and can be decomposed:

✏ a b c
x u y

1. |u| � 1 (u = a);
2. |xu|  k (xu = a);
3. 8n 2 N, xuny (i.e. anbc) belongs to the language.

43 / 110



Formal Languages and Linguistics
Regular Languages

Properties

Pumping lemma (consequences)

regular ) pumping property satisfied
pumping property NOT satisfied ) NOT regular
pumping property satisfied 6) regular

To prove that L is
regular provide a DFA;

not regular show that the pumping property is not satisfied.
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Pumping lemma (example II)

Let’s show that L = {anbn | n 2 N} is not regular.
I Consider any k 2 N.
I Consider w = akbk 2 L (|w | � k).
I If w = xuy with |u| � 1 and |xu|  k , then u contains no b.
I But then, xu0y = xy /2 L (strictly less as than bs).
I So no k 2 N works; L does not have the pumping property.

A similar reasoning applies to {xunyvnz | x , y , z , u, v 2 ⌃⇤}.
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Regular expressions

It is common to use the 3 rational operations:
I union
I product
I Kleene star

to characterize certain languages...

({a} [ {b})⇤.{c} = {c , ac , abc , bc , . . . , baabaac , . . .}
(simplified notation (a|b)⇤c — regular expressions)

... but not all languages can be thus characterized.
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Def. 11 (Rational Language)
A rational language on ⌃ is a subset of ⌃⇤ inductively defined thus:
I ; and {"} are rational languages ;
I for all a 2 X , the singleton {a} is a rational language ;
I for all g and h rational, the sets g [ h, g .h and g⇤ are rational

languages.
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Results: expressivity

I Any finite langage is regular
I anbm is regular
I anbn is not regular
I wwR is not regular (R : reverse word)
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Regular expressions

Decidable problems

• The “word problem” w
?
2 L(A) is decidable.

) A computation on an automaton always stops.

• The “emptiness problem” L(A)
?
= ; is decidable.

) It’s enough to test all possible words of length  k , where k is the
number of states.

• The “finiteness problem” L(A)
?
is finite is decidable.

) Test all possible words whose length is between k and 2k . If there
exists u s.t. k < |u| < 2k and u 2 L(A), then L(A) is infinite.

• The “equivalence problem” L(A)
?
= L(A0) is decidable.

) it boils down to answering the question:⇣
L(A) \ L(A0)

⌘
[
⇣
L(A0) \ L(A)

⌘
= ;
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À quoi ça sert?

Why would you want to define (formally) a language?
I to formulate a request to a search engine (mang.*)
I to associate actions to (classes of) words (e.g., transducers)

I formal languages (math. expressions, programming
languages...)

I artificial (interface) languages
I (subpart of) natural languages
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Definition

Definition

3 possible definitions
1. a regular language can be defined by rational/regular

expressions
2. a regular language can be recognized by a finite automaton
3. a regular language can be generated by a regular grammar
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Formal grammar

Def. 12 ((Formal) Grammar)
A formal grammar is defined by h⌃,N, S ,Pi where
I ⌃ is an alphabet
I N is a disjoint alphabet (non-terminal vocabulary)
I S 2 V is a distinguished element of N, called the axiom
I P is a set of « production rules », namely a subset of the

cartesian product (⌃ [ N)⇤N(⌃ [ N)⇤ ⇥ (⌃ [ N)⇤.
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Examples

h⌃,N, S ,Pi

G0 =

*

{joe, sam, sleeps}, {N,V , S}, S ,

8
>><

>>:

9
>>=

>>;

+
}
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Definition

Examples

h⌃,N, S ,Pi

G0 =

*
{joe, sam, sleeps}, {N,V , S}, S ,

8
>><

>>:

N ! joe
N ! sam
V ! sleeps
S ! N V

9
>>=

>>;

+
}
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Examples (cont’d)

G1 =

*
{jean, dort}, {Np, SN, SV ,V , S}, S ,

8
>>>><

>>>>:

S ! SN SV
SN ! Np
SV ! V
Np ! jean
V ! dort

9
>>>>=

>>>>;

+
}

G2 = h{(, )}, {S}, S , {S �! " | (S)S}i
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Definition

Notation

G3 : E �! E + E
| E ⇥ E
| ( E )
| F

F �! 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

G3 = h{+,⇥, (, ), 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, {E ,F},E , {. . .}i

G4 = E ! E + T | T ,T ! T ⇥ F | F ,F ! (E ) | a
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Formal Languages and Linguistics
Formal Grammars

Definition

Immediate Derivation

Def. 13 (Immediate derivation)
Let G = hX ,V , S ,Pi a grammar, (f , g) 2 (X [ V )⇤ two “words”,
r 2 P a production rule, such that r : A �! u (u 2 (X [ V )⇤).

• f derives into g (immediate derivation) with the rule r
(noted f

r�! g) iff
9v ,w s.t. f = vAw and g = vuw

• f derives into g (immediate derivation) in the grammar G
(noted f

G�! g) iff
9r 2 P s.t. f

r�! g .
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Definition

Derivation

Def. 14 (Derivation)
f

G⇤�! g if f = g or
9f0, f1, f2, ..., fn s.t. f0 = f

fn = g

8i 2 [1, n] : fi�1
G�! fi

An example with G0:
N V joe N

�! sam V joe N �! sam V joe joe or
sam V joe sam or
sam sleeps joe N or
. . .
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Formal Grammars

Definition

Endpoint of a derivation

G3 : E �! E + E
| E ⇥ E
| ( E )
| F

F �! 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

An example with G3:

E ⇥ E

�! F ⇥ E �! 3⇥ E �! 3⇥ (E ) �! 3⇥ (E + E ) �!
3⇥ (E + F ) �! 3⇥ (E + 4) �! 3⇥ (F + 4) �! 3⇥ (5+ 4) �!|
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Formal Languages and Linguistics
Formal Grammars

Definition

Engendered language

Def. 15 (Language engendered by a word)
Let f 2 (⌃ [ N)⇤.
LG(f ) = {g 2 X ⇤/f

G⇤�! g}

Def. 16 (Language engendered by a grammar)
The language engendered by a grammar G is the set of words of ⌃⇤

derived from the axiom.
LG = LG(S)

For instance () 2 LG2 : S ! (S)S ! ()S ! ()
as well as ((())), ()()(), ((()()())). . .
but )()( 62 LG2 , even though the following is a licit derivation :
)S(! )(S)S(! )()S(! )()(
for there is no way to arrive at )S( starting with S .
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Definition

Example

G4 = E ! E + T | T ,T ! T ⇥ F | F ,F ! (E ) | a

a+ a, a+ (a⇥ a), ...
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Definition

Proto-word

Def. 17 (Proto-word)
A proto-word (or proto-sentence) is a word on (⌃ [ N)⇤N(⌃ [ N)⇤

(that is, a word containing at least one letter of N) produced by a
derivation from the axiom.

E ! E + T ! E + T ⇤ F ! T + T ⇤ F ! T + F ⇤ F !
T + a ⇤ F ! F + a ⇤ F ! a+ a ⇤ F !///////////a+ a ⇤ a
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Formal Grammars

Definition

Multiple derivations

A given word may have several derivations:
E ! E + E ! F + E ! F + F ! 3 + F ! 3 + 4

E ! E + E ! E + F ! E + 4 ! F + 4 ! 3 + 4
... but if the grammar is not ambiguous, there is only one left

derivation:
E ! E + E ! F + E ! 3 + E ! 3 + F ! 3 + 4

parsing : trying to find the/a left derivation (resp. right)
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Formal Grammars

Definition

Derivation tree

For context-free languages, there is a way to represent the set of
equivalent derivations, via a derivation tree which shows all the
derivation independantly of their order.

Grammar G2: S �! "
| (S)S

S

⇣
⇣

⇣
⇣
⇣
⇣
⇣⇣

�

�
�

@

@
@

P
P

P
P

P
P

PP

( S
⇣
⇣
⇣⇣

��@@ P
P

PP

( S

"

) S

"

) S

"

S ! (S)S ! ((S)S)S ! ((S)S)! ((S))! (())
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Formal Grammars

Definition

Structural analysis

Syntactic trees are precious to give access to the semantics

E

�
�

�
�

H
H

H
H

E

T

F

a

+ T

�
�

H
H

T

F

a

⇤ F

a
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Definition

Ambiguity
When a grammar can assign more than one derivation tree to a
word w 2 L(G ) (or more than one left derivation), the grammar is
ambiguous.
For instance, G3 is ambiguous, since it can assign the two follwing
trees to 1 + 2⇥ 3:

E

�
�
�

��

H
H

H
HH

E

F

1

+ E

�
��

H
HH

E

F

2

⇥ E

F

3

E

�
�
�
��

H
H

H
HH

E

�
��

H
HH

E

F

1

+ E

F

2

⇥ E

F

3
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Definition

About ambiguity

I Ambiguity is not desirable for the semantics
I Useful artificial languages are rarely ambiguous
I There are context-free languages that are intrinsequely

ambiguous (1)
I Natural languages are notoriously ambiguous...

(1) {anbambapbaq|(n > q ^m > p) _ (n > m ^ p > q)}
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Formal Grammars

Definition

Comparison of grammars

I different languages generated ) different grammars
I same language generated by G and G0:

) same weak generative power
I same language generated by G and G0,

and same structural decomposition :
) same strong generative power
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Formal Languages and Linguistics
Formal complexity of Natural Languages

Are NL context-sensitive?
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