Formal Languages and Linguistics

Pascal Amsili
Sorbonne Nouvelle, Lattice (CNRS/ENS-PSL/SN)

Cogmaster, september 2023

Overview

Formal Languages

Regular Languages
Automata
Properties
Regular expressions Definition

Formal Grammars

Formal complexity of Natural Languages

Formal Languages and Linguistics
$\left\llcorner_{\text {Regular Languages }}\right.$
\square Automata

Metaphoric definition

Formal definition

Def. 9 (Finite deterministic automaton (FDA))
A finite state deterministic automaton \mathcal{A} is defined by :

$$
\mathcal{A}=\left\langle Q, \Sigma, q_{0}, F, \delta\right\rangle
$$

Q is a finite set of states
Σ is an alphabet
q_{0} is a distinguished state, the initial state,
F is a subset of Q, whose members are called final/terminal states
δ is a mapping fonction from $Q \times \Sigma$ to Q.
Notation $\delta(q, a)=r$.
$\left\llcorner_{\text {Regular Languages }}\right.$
\square Automata

Example

Let us consider the (finite) language $\{a a, a b, a b b, a c b a, a c c b\}$. The following automaton recognizes this langage: $\left\langle Q, \Sigma, q_{0}, F, \delta\right\rangle$, avec $Q=\{1,2,3,4,5,6,7\}, \Sigma=\{a, b, c\}, q_{0}=1, F=\{3,4\}$, and δ is thus defined:

$$
\begin{aligned}
& \delta: \quad(1, a) \mapsto 2 \\
& (2, a) \mapsto 3 \\
& (2, b) \mapsto 4 \\
& (2, c) \mapsto 5 \\
& (4, b) \mapsto 3 \\
& (5, b) \mapsto 6 \\
& (5, c) \mapsto 7 \\
& (6, a) \mapsto 3 \\
& (7, b) \mapsto 3
\end{aligned}
$$

	a	b	c
$\rightarrow 1$	2		
2	3	4	5
$\leftarrow 3$			
$\leftarrow 4$		3	
5		6	7
6	3		
7		3	

Recognition

Recognition is defined as the existence of a sequence of states defined in the following way. Such a sequence is called a path in the automaton.

Def. 10 (Recognition)
A word $a_{1} a_{2} \ldots a_{n}$ is recognized/accepted by an automaton iff there exists a sequence $k_{0}, k_{1}, \ldots, k_{n}$ of states such that:

$$
\begin{aligned}
& k_{0}=q_{0} \\
& k_{n} \in F \\
& \forall i \in[1, n], \quad \delta\left(k_{i-1}, a_{i}\right)=k_{i}
\end{aligned}
$$

Formal Languages and Linguistics
Legular Languages
\llcorner Automata

Example

Exercices

Let $\Sigma=\{a, b, c\}$. Give deterministic finite state automata that accept the following languages:

1. The set of words with an even length.
2. The set of words where the number of occurrences of b is divisible by 3 .
3. The set of words ending with $a b$.
4. The set of words not ending with a b.
5. The set of words non empty not ending with a b.
6. The set of words comprising at least a b.
7. The set of words comprising at most a b.
8. The set of words comprising exactly one b.

Formal Languages and Linguistics
Legular Languages
-Automata

Answers

Sorbonne FYF
Nouvelle FFY

Overview

Formal Languages

Regular Languages
Automata
Properties
Regular expressions Definition

Formal Grammars

Formal complexity of Natural Languages

Ways of non-determinism

A word is recognized if there exists a path in the automaton. It is not excluded however that there be several paths for one word: in that case, the automaton is non deterministic.
What are the sources of non determinism?

- $\delta\left(a, S_{1}\right)=\left\{S_{2}, S_{3}\right\}$
- "spontaneous transition" $=\varepsilon$-transition

Equivalence theorems

For any non-deterministic automaton, it is possible to design a complete deterministic automaton that recognizes the same language.
Proofs: algorithms (constructive proofs)
First "remove" ε-transitions, then "remove" multiple transitions.

Closure (1)

Regular languages are closed under various operations: if the languages L and L^{\prime} are regular, so are:

- $L \cup L^{\prime}$ (union); L. L' (product); L^{*} (Kleene star)
(rational operations)

Formal Languages and Linguistics
Legular Languages
-Properties

Union of regular languages: an example

Formal Languages and Linguistics
Legular Languages
—Properties

Rational operations

Closure (2)

Regular languages are closed under various operations: if the languages L and L^{\prime} are regular, so are:

- $L \cup L^{\prime}$ (union); $L . L^{\prime}$ (product); L^{*} (Kleene star)
(rational operations)
\rightarrow for every rational expression describing a language, there is a FSA that recognizes L

Closure (2)

Regular languages are closed under various operations: if the languages L and L^{\prime} are regular, so are:

- $L \cup L^{\prime}$ (union); $L . L^{\prime}$ (product); L^{*} (Kleene star)
(rational operations)
\rightarrow for every rational expression describing a language, there is a FSA that recognizes L and vice-versa

Closure (2)

Regular languages are closed under various operations: if the languages L and L^{\prime} are regular, so are:

- $L \cup L^{\prime}$ (union); $L . L^{\prime}$ (product); L^{*} (Kleene star)
(rational operations)
\rightarrow for every rational expression describing a language, there is
a FSA that recognizes L
and vice-versa
- $L \cap L^{\prime}$ (intersection); \bar{L} (complement)

LRegular Languages

Intersection of regular languages

Algorithmic proof
Deterministic complete automata

L_{1}	a	b
$\rightarrow 1$	2	4
2	4	3
$\leftarrow 3$	3	3
4	4	4

L_{2}	a	b
$\leftrightarrow 1$	2	5
2	5	3
3	4	5
4	1	4
5	5	5

$L_{1} \cap L_{2}$	a	b
$\rightarrow(1,1)$	$(2,2)$	$(4,5)$
$(2,2)$	$(4,5)$	$(3,3)$
$(4,5)$	$(4,5)$	$(4,5)$
$(3,3)$	$(3,4)$	$(3,5)$
$(3,4)$	$(3,1)$	$(3,4)$
$\leftarrow(3,1)$	$(3,2)$	$(3,4)$
$(3,2)$	$(3,4)$	$(3,3)$
$(3,5)$	$(3,5)$	$(3,5)$

Complement of a regular language

Deterministic complete automata

Pumping lemma (intuition)

Take an automaton A with k states.
If $\mathcal{L}(A)$ is infinite, then $\exists w \in \mathcal{L}(A),|w| \geq k$.
Therefore, when accepting w, A goes through some state q at least twice.
That means that there is a loop $q \xrightarrow{w_{i \cdot j}} q$.
Repeating the loop any number of times (even 0) always produces a word $\left(w_{1: i-1} w_{i: j}{ }^{n} w_{j+1:|w|}\right)$ in $\mathcal{L}(A)$.

Pumping lemma (intuition)

Take an automaton A with k states.
If $\mathcal{L}(A)$ is infinite, then $\exists w \in \mathcal{L}(A),|w| \geq k$.
Therefore, when accepting w, A goes through some state q at least twice.
That means that there is a loop $q \xrightarrow{w_{i \cdot j}} q$.
Repeating the loop any number of times (even 0) always produces a word $\left(w_{1: i-1} w_{i: j}{ }^{n} w_{j+1:|w|}\right)$ in $\mathcal{L}(A)$.

Pumping lemma (definition)

Pumping Lemma

Let L be a regular language.
$\exists k \in \mathbb{N}$ such that
$\forall w \in L$ such that $|w| \geq k$,
$\exists x, u, y$ such that $w=x u y$ and that

1. $|u| \geq 1$;
2. $|x u| \leq k$;
3. $\forall n \in \mathbb{N}, x u^{n} y \in L$.
\rightarrow " L has the pumping property."

Is NL regular? Pumping lemma (example I)

$a^{*} b c\left(\right.$ i.e. $\left\{a^{n} b c \mid n \in \mathbb{N}\right\}$) is regular (there is a DFA).
So, it must have the pumping property.

It happens that $k=3$ works.
For example, $w=a b c \in L$ is long enough and can be decomposed:

$$
\frac{\epsilon}{x} \frac{a}{u} \frac{b \quad c}{y}
$$

1. $|u| \geq 1(u=a)$;
2. $|x u| \leq k(x u=a)$;
3. $\forall n \in \mathbb{N}, x u^{n} y$ (i.e. $a^{n} b c$) belongs to the language.

LRegular Languages
-Properties

Pumping lemma (consequences)

regular	\Rightarrow	pumping property satisfied
pumping property NOT satisfied	\Rightarrow	NOT regular
pumping property satisfied	\nRightarrow	regular

To prove that L is
regular provide a DFA;
not regular show that the pumping property is not satisfied.

Pumping lemma (example II)

Let's show that $L=\left\{a^{n} b^{n} \mid n \in \mathbb{N}\right\}$ is not regular.

- Consider any $k \in \mathbb{N}$.
- Consider $w=a^{k} b^{k} \in L(|w| \geq k)$.
- If $w=x u y$ with $|u| \geq 1$ and $|x u| \leq k$, then u contains no b.
- But then, $x u^{0} y=x y \notin L$ (strictly less as than $b s$).
- So no $k \in \mathbb{N}$ works; L does not have the pumping property.

A similar reasoning applies to $\left\{x u^{n} y v^{n} z \mid x, y, z, u, v \in \Sigma^{*}\right\}$.

Overview

Formal Languages

Regular Languages
Automata
Properties
Regular expressions Definition

Formal Grammars

Formal complexity of Natural Languages

Regular expressions

It is common to use the 3 rational operations:

- union
- product
- Kleene star
to characterize certain languages...

Regular expressions

It is common to use the 3 rational operations:

- union
- product
- Kleene star
to characterize certain languages...

$$
\begin{aligned}
(\{a\} \cup\{b\})^{*} \cdot\{c\} & =\{c, a c, a b c, b c, \ldots, \text { baabaac, }, \ldots\} \\
& \text { (simplified notation }(a \mid b)^{*} c-\text { regular expressions) }
\end{aligned}
$$

Regular expressions

It is common to use the 3 rational operations:

- union
- product
- Kleene star
to characterize certain languages...
$(\{a\} \cup\{b\})^{*} .\{c\}=\{c, a c, a b c, b c, \ldots$, baabaac,$\ldots\}$
(simplified notation $(a \mid b)^{*} c$ - regular expressions)
... but not all languages can be thus characterized.

Def. 11 (Rational Language)

A rational language on Σ is a subset of Σ^{*} inductively defined thus:

- \emptyset and $\{\varepsilon\}$ are rational languages;
- for all $a \in X$, the singleton $\{a\}$ is a rational language ;
- for all g and h rational, the sets $g \cup h, g . h$ and g^{*} are rational languages.

Results: expressivity

- Any finite langage is regular
- $a^{n} b^{m}$ is regular
- $a^{n} b^{n}$ is not regular
- $w w^{R}$ is not regular (${ }^{R}$: reverse word)

Decidable problems

- The "word problem" $w \stackrel{?}{\in} L(\mathcal{A})$ is decidable.
\Rightarrow A computation on an automaton always stops.

Decidable problems

- The "word problem" $w \stackrel{?}{\in} L(\mathcal{A})$ is decidable.
\Rightarrow A computation on an automaton always stops.
- The "emptiness problem" $L(\mathcal{A}) \stackrel{?}{=} \emptyset$ is decidable.
\Rightarrow It's enough to test all possible words of length $\leq k$, where k is the number of states.

Decidable problems

- The "word problem" $w \stackrel{?}{\in} L(\mathcal{A})$ is decidable.
\Rightarrow A computation on an automaton always stops.
- The "emptiness problem" $L(\mathcal{A}) \stackrel{?}{=} \emptyset$ is decidable.
\Rightarrow It's enough to test all possible words of length $\leq k$, where k is the number of states.
- The "finiteness problem" $L(\mathcal{A})$ is finite is decidable.
\Rightarrow Test all possible words whose length is between k and $2 k$. If there exists u s.t. $k<|u|<2 k$ and $u \in L(\mathcal{A})$, then $L(\mathcal{A})$ is infinite.

Decidable problems

- The "word problem" $w \stackrel{?}{\in} L(\mathcal{A})$ is decidable.
\Rightarrow A computation on an automaton always stops.
- The "emptiness problem" $L(\mathcal{A}) \stackrel{?}{=} \emptyset$ is decidable.
\Rightarrow It's enough to test all possible words of length $\leq k$, where k is the number of states.
- The "finiteness problem" $L(\mathcal{A})$ is finite is decidable.
\Rightarrow Test all possible words whose length is between k and $2 k$. If there exists u s.t. $k<|u|<2 k$ and $u \in L(\mathcal{A})$, then $L(\mathcal{A})$ is infinite.
- The "equivalence problem" $L(\mathcal{A}) \stackrel{?}{=} L\left(\mathcal{A}^{\prime}\right)$ is decidable.
\Rightarrow it boils down to answering the question:
$\left(L(\mathcal{A}) \cap \overline{L\left(\mathcal{A}^{\prime}\right)}\right) \cup\left(L\left(\mathcal{A}^{\prime}\right) \cap \overline{L(\mathcal{A})}\right)=\emptyset$

À quoi ça sert?

Why would you want to define (formally) a language?

- to formulate a request to a search engine (mang.*)
- to associate actions to (classes of) words (e.g., transducers)
- formal languages (math. expressions, programming languages...)
- artificial (interface) languages
- (subpart of) natural languages

Overview

Formal Languages

Regular Languages
Automata
Properties
Regular expressions
Definition

Formal Grammars

Formal complexity of Natural Languages

Definition

3 possible definitions

1. a regular language can be defined by rational/regular expressions
2. a regular language can be recognized by a finite automaton
3. a regular language can be generated by a regular grammar

Overview

Formal Languages

Regular Languages

Formal Grammars
Definition
Language classes

Formal complexity of Natural Languages

Formal grammar

Def. 12 ((Formal) Grammar)
A formal grammar is defined by $\langle\Sigma, N, S, P\rangle$ where

- Σ is an alphabet
- N is a disjoint alphabet (non-terminal vocabulary)
- $S \in V$ is a distinguished element of N, called the axiom
- P is a set of « production rules », namely a subset of the cartesian product $(\Sigma \cup N)^{*} N(\Sigma \cup N)^{*} \times(\Sigma \cup N)^{*}$.

Formal Languages and Linguistics
$\left\llcorner_{\text {Formal Grammars }}\right.$
Definition

Examples

$$
\langle\Sigma, N, S, P\rangle
$$

$\mathcal{G}_{0}=\langle$

Examples

$\langle\Sigma, N, S, P\rangle$

$\mathcal{G}_{0}=\langle\{j o e$, sam, sleeps $\}$,

Examples

$$
\langle\Sigma, N, S, P\rangle
$$

$\mathcal{G}_{0}=\langle\{j$ joe, sam, sleeps $\},\{N, V, S\}$,

Examples

$$
\langle\Sigma, N, S, P\rangle
$$

$\mathcal{G}_{0}=\langle\{$ joe , sam, sleeps $\},\{N, V, S\}, S$,

Examples

$$
\begin{array}{r}
\langle\Sigma, N, S, P\rangle \\
\left.\mathcal{G}_{0}=\left\langle\{\text { joe }, \text { sam, sleeps }\},\{N, V, S\}, S,\left\{\begin{array}{l}
(N, \text { joe }) \\
(N, \text { sam }) \\
(V, \text { sleeps }) \\
(S, N V)
\end{array}\right\}\right\rangle\right\}
\end{array}
$$

Examples

$$
\begin{gathered}
\langle\Sigma, N, S, P\rangle \\
\left.\mathcal{G}_{0}=\left\langle\{\text { joe, sam, sleeps }\},\{N, V, S\}, S,\left\{\begin{array}{l}
N \rightarrow \text { joe } \\
N \rightarrow \text { sam } \\
V \rightarrow \text { sleeps } \\
S \rightarrow N V
\end{array}\right\}\right\rangle\right\}
\end{gathered}
$$

Examples (cont'd)

$$
\begin{aligned}
& \left.\mathcal{G}_{1}=\left\langle\{j e a n, \text { dort }\},\{N p, S N, S V, V, S\}, S,\left\{\begin{array}{l}
S \rightarrow S N S V \\
S N \rightarrow N p \\
S V \rightarrow V \\
N p \rightarrow \text { jean } \\
V \rightarrow \text { dort }
\end{array}\right\}\right\rangle\right\} \\
& \mathcal{G}_{2}=\langle\{(,)\},\{S\}, S,\{S \longrightarrow \varepsilon \mid(S) S\}\rangle
\end{aligned}
$$

Notation

$$
\begin{aligned}
\mathcal{G}_{3}: E & \longrightarrow+E \\
& \\
& E \times E \\
& (E) \\
& \\
& \\
& \\
F & \\
& 0|1| 2|3| 4|5| 6|7| 8 \mid 9
\end{aligned}
$$

Notation

$$
\left.\begin{array}{rl}
\mathcal{G}_{3}: E & \longrightarrow \\
& E+E \\
& E \times E \\
& (E) \\
& \mid \\
& F
\end{array}\right)
$$

Notation

$$
\begin{aligned}
& \mathcal{G}_{3}: E \longrightarrow E+E \\
& \text { | } E \times E \\
& \text { | (E) } \\
& \mid F \\
& F \longrightarrow 0|1| 2|3| 4|5| 6|7| 8 \mid 9 \\
& \mathcal{G}_{3}=\langle\{+, \times,(,), 0,1,2,3,4,5,6,7,8,9\},\{E, F\}, E,\{\ldots\}\rangle \\
& G_{4}=E \rightarrow E+T|T, T \rightarrow T \times F| F, F \rightarrow(E) \mid a
\end{aligned}
$$

Immediate Derivation

Def. 13 (Immediate derivation)
Let $\mathcal{G}=\langle X, V, S, P\rangle$ a grammar, $(f, g) \in(X \cup V)^{*}$ two "words", $r \in P$ a production rule, such that $r: A \longrightarrow u\left(u \in(X \cup V)^{*}\right)$.

- f derives into g (immediate derivation) with the rule r (noted $f \xrightarrow{r} g$) iff
$\exists v, w$ s.t. $f=v A w$ and $g=v u w$
- f derives into g (immediate derivation) in the grammar \mathcal{G} (noted $f \xrightarrow{\mathcal{G}} g$) iff
$\exists r \in P$ s.t. $f \xrightarrow{r} g$.

Derivation

Def. 14 (Derivation)

$$
f \xrightarrow{\mathcal{G} *} g \text { if } f=g
$$

$$
\exists f_{0}, f_{1}, f_{2}, \ldots, f_{n} \text { s.t. } f_{0}=f
$$

$$
f_{n}=g
$$

$$
\forall i \in[1, n]: f_{i-1} \xrightarrow{\mathcal{G}} f_{i}
$$

An example with \mathcal{G}_{0} :
$N V$ joe N

Derivation

Def. 14 (Derivation)

$f \xrightarrow{\mathcal{G} *} g$ if $f=g$

$$
\begin{aligned}
\exists f_{0}, f_{1}, f_{2}, \ldots, f_{n} \text { s.t. } & f_{0}=f \\
& f_{n}=g \\
\forall i & \in[1, n]: f_{i-1} \xrightarrow{\mathcal{G}} f_{i}
\end{aligned}
$$

An example with \mathcal{G}_{0} :
$N V$ joe $N \longrightarrow$ sam V joe N

Derivation

Def. 14 (Derivation)

$f \xrightarrow{\mathcal{G} *} g$ if $f=g$

$$
\exists f_{0}, f_{1}, f_{2}, \ldots, f_{n} \text { s.t. } f_{0}=f
$$

$$
f_{n}=g
$$

$$
\forall i \in[1, n]: f_{i-1} \xrightarrow{\mathcal{G}} f_{i}
$$

An example with \mathcal{G}_{0} :
$N V$ joe $N \longrightarrow \operatorname{sam} V$ joe $N \longrightarrow \operatorname{sam} V$ joe joe

Derivation

Def. 14 (Derivation)

$f \xrightarrow{\mathcal{G}_{*}} g$ if $f=g$

$$
\exists f_{0}, f_{1}, f_{2}, \ldots, f_{n} \text { s.t. } f_{0}=f
$$

$$
f_{n}=g
$$

$$
\forall i \in[1, n]: f_{i-1} \xrightarrow{\mathcal{G}} f_{i}
$$

An example with \mathcal{G}_{0} :
$N V$ joe $N \longrightarrow \operatorname{sam} V$ joe $N \longrightarrow \quad \begin{array}{ll}\operatorname{sam} V \text { joe joe } & \text { or } \\ \text { sam } V \text { joe sam } & \text { or }\end{array}$

Derivation

Def. 14 (Derivation)
$f \xrightarrow{\mathcal{G} *} g$ if $f=g$

$$
\exists f_{0}, f_{1}, f_{2}, \ldots, f_{n} \text { s.t. } f_{0}=f
$$

$$
f_{n}=g
$$

$$
\forall i \in[1, n]: f_{i-1} \xrightarrow{\mathcal{G}} f_{i}
$$

An example with \mathcal{G}_{0} :

$N V$ joe $N \longrightarrow$ sam V joe $N \longrightarrow$| sam V joe joe | or |
| :--- | :--- |
| sam V joe sam | |
| sam sleeps joe N | |

Endpoint of a derivation

An example with \mathcal{G}_{3} :
$E \times E$

Endpoint of a derivation

An example with \mathcal{G}_{3} :

$$
E \times E \longrightarrow F \times E
$$

Endpoint of a derivation

An example with \mathcal{G}_{3} :

$$
E \times E \longrightarrow F \times E \longrightarrow 3 \times E
$$

Endpoint of a derivation

An example with \mathcal{G}_{3} :
$E \times E \longrightarrow F \times E \longrightarrow 3 \times E \longrightarrow 3 \times(E)$

Endpoint of a derivation

An example with \mathcal{G}_{3} :
$E \times E \longrightarrow F \times E \longrightarrow 3 \times E \longrightarrow 3 \times(E) \longrightarrow 3 \times(E+E)$

Endpoint of a derivation

An example with \mathcal{G}_{3} :

$$
\begin{aligned}
& E \times E \longrightarrow F \times E \longrightarrow 3 \times E \longrightarrow 3 \times(E) \longrightarrow 3 \times(E+E) \longrightarrow \\
& 3 \times(E+F)
\end{aligned}
$$

Endpoint of a derivation

$\begin{array}{rl}\mathcal{G}_{3}: E & E+E \\ & E \times E\end{array}$

$$
F \longrightarrow \begin{aligned}
& \\
& \\
& \mid \\
& F \\
& \\
& \\
& \\
& \\
& \\
& \hline
\end{aligned} 1|2| 3|4| 5|6| 7|8| 9
$$

An example with \mathcal{G}_{3} :

$$
\begin{aligned}
& E \times E \longrightarrow F \times E \longrightarrow 3 \times E \longrightarrow 3 \times(E) \longrightarrow 3 \times(E+E) \longrightarrow \\
& 3 \times(E+F) \longrightarrow 3 \times(E+4)
\end{aligned}
$$

Endpoint of a derivation

$$
\begin{aligned}
\mathcal{G}_{3}: E & \longrightarrow+E \\
& E \times E \\
& E \times E \\
& (E) \\
& \mid \\
F & \\
& 0|1| 2|3| 4|5| 6|7| 8 \mid 9
\end{aligned}
$$

An example with \mathcal{G}_{3} :

$$
\begin{aligned}
& E \times E \longrightarrow F \times E \longrightarrow 3 \times E \longrightarrow 3 \times(E) \longrightarrow 3 \times(E+E) \longrightarrow \\
& 3 \times(E+F) \longrightarrow 3 \times(E+4) \longrightarrow 3 \times(F+4)
\end{aligned}
$$

Endpoint of a derivation

$$
\begin{aligned}
\mathcal{G}_{3}: E & \longrightarrow+E \\
& E \times E \\
& E \times E \\
& (E) \\
& \mid \\
F & \\
& 0|1| 2|3| 4|5| 6|7| 8 \mid 9
\end{aligned}
$$

An example with \mathcal{G}_{3} :

$$
\begin{aligned}
& E \times E \longrightarrow F \times E \longrightarrow 3 \times E \longrightarrow 3 \times(E) \longrightarrow 3 \times(E+E) \longrightarrow \\
& 3 \times(E+F) \longrightarrow 3 \times(E+4) \longrightarrow 3 \times(F+4) \longrightarrow 3 \times(5+4)
\end{aligned}
$$

Endpoint of a derivation

$$
\begin{aligned}
\mathcal{G}_{3}: E & \longrightarrow+E \\
& E \times E \\
& E \times E \\
& (E) \\
& \mid \\
F & \\
& 0|1| 2|3| 4|5| 6|7| 8 \mid 9
\end{aligned}
$$

An example with \mathcal{G}_{3} :

$$
\begin{aligned}
& E \times E \longrightarrow F \times E \longrightarrow 3 \times E \longrightarrow 3 \times(E) \longrightarrow 3 \times(E+E) \longrightarrow \\
& 3 \times(E+F) \longrightarrow 3 \times(E+4) \longrightarrow 3 \times(F+4) \longrightarrow 3 \times(5+4) \longrightarrow
\end{aligned}
$$

Engendered language

Def. 15 (Language engendered by a word)
Let $f \in(\Sigma \cup N)^{*}$.
$L_{\mathcal{G}}(f)=\left\{g \in X^{*} / f \xrightarrow{\mathcal{G}_{*}} g\right\}$
Def. 16 (Language engendered by a grammar)
The language engendered by a grammar \mathcal{G} is the set of words of Σ^{*} derived from the axiom.
$L_{\mathcal{G}}=L_{\mathcal{G}}(S)$

Engendered language

Def. 15 (Language engendered by a word)
Let $f \in(\Sigma \cup N)^{*}$.
$L_{\mathcal{G}}(f)=\left\{g \in X^{*} / f \xrightarrow{\mathcal{G}_{*}} g\right\}$
Def. 16 (Language engendered by a grammar)
The language engendered by a grammar \mathcal{G} is the set of words of Σ^{*} derived from the axiom.
$L_{\mathcal{G}}=L_{\mathcal{G}}(S)$
For instance ()$\in L_{\mathcal{G}_{2}}$:

Engendered language

Def. 15 (Language engendered by a word)
Let $f \in(\Sigma \cup N)^{*}$.
$L_{\mathcal{G}}(f)=\left\{g \in X^{*} / f \xrightarrow{\mathcal{G}_{*}} g\right\}$
Def. 16 (Language engendered by a grammar)
The language engendered by a grammar \mathcal{G} is the set of words of Σ^{*} derived from the axiom.
$L_{\mathcal{G}}=L_{\mathcal{G}}(S)$
For instance ()$\in L_{\mathcal{G}_{2}}: S \rightarrow(S) S$

Engendered language

Def. 15 (Language engendered by a word)
Let $f \in(\Sigma \cup N)^{*}$.
$L_{\mathcal{G}}(f)=\left\{g \in X^{*} / f \xrightarrow{\mathcal{G}_{*}} g\right\}$
Def. 16 (Language engendered by a grammar)
The language engendered by a grammar \mathcal{G} is the set of words of Σ^{*} derived from the axiom.
$L_{\mathcal{G}}=L_{\mathcal{G}}(S)$
For instance ()$\in L_{\mathcal{G}_{2}}: S \rightarrow(S) S \rightarrow() S$

Engendered language

Def. 15 (Language engendered by a word)
Let $f \in(\Sigma \cup N)^{*}$.
$L_{\mathcal{G}}(f)=\left\{g \in X^{*} / f \xrightarrow{\mathcal{G}_{*}} g\right\}$
Def. 16 (Language engendered by a grammar)
The language engendered by a grammar \mathcal{G} is the set of words of Σ^{*} derived from the axiom.
$L_{\mathcal{G}}=L_{\mathcal{G}}(S)$
For instance ()$\in L_{\mathcal{G}_{2}}: S \rightarrow(S) S \rightarrow() S \rightarrow()$

Engendered language

Def. 15 (Language engendered by a word)
Let $f \in(\Sigma \cup N)^{*}$.
$L_{\mathcal{G}}(f)=\left\{g \in X^{*} / f \xrightarrow{\mathcal{G}_{*}} g\right\}$
Def. 16 (Language engendered by a grammar)
The language engendered by a grammar \mathcal{G} is the set of words of Σ^{*} derived from the axiom.
$L_{\mathcal{G}}=L_{\mathcal{G}}(S)$
For instance ()$\in L_{\mathcal{G}_{2}}: S \rightarrow(S) S \rightarrow() S \rightarrow()$ as well as $((())),()()(),((()()())) \ldots$

Engendered language

Def. 15 (Language engendered by a word)
Let $f \in(\Sigma \cup N)^{*}$.
$L_{\mathcal{G}}(f)=\left\{g \in X^{*} / f \xrightarrow{\mathcal{G}_{*}} g\right\}$
Def. 16 (Language engendered by a grammar)
The language engendered by a grammar \mathcal{G} is the set of words of Σ^{*} derived from the axiom.
$L_{\mathcal{G}}=L_{\mathcal{G}}(S)$
For instance ()$\in L_{\mathcal{G}_{2}}: S \rightarrow(S) S \rightarrow() S \rightarrow()$ as well as $((())),()()(),((()()())) \ldots$ but $)()\left(\notin L_{G_{2}}\right.$, even though the following is a licit derivation :

Engendered language

Def. 15 (Language engendered by a word)
Let $f \in(\Sigma \cup N)^{*}$.
$L_{\mathcal{G}}(f)=\left\{g \in X^{*} / f \xrightarrow{\mathcal{G}_{*}} g\right\}$
Def. 16 (Language engendered by a grammar)
The language engendered by a grammar \mathcal{G} is the set of words of Σ^{*} derived from the axiom.
$L_{\mathcal{G}}=L_{\mathcal{G}}(S)$
For instance ()$\in L_{\mathcal{G}_{2}}: S \rightarrow(S) S \rightarrow() S \rightarrow()$
as well as $((())),()()(),((()()())) \ldots$
but $)()\left(\notin L_{G_{2}}\right.$, even though the following is a licit derivation :
)S \rightarrow

Engendered language

Def. 15 (Language engendered by a word)
Let $f \in(\Sigma \cup N)^{*}$.
$L_{\mathcal{G}}(f)=\left\{g \in X^{*} / f \xrightarrow{\mathcal{G}_{*}^{*}} g\right\}$
Def. 16 (Language engendered by a grammar)
The language engendered by a grammar \mathcal{G} is the set of words of Σ^{*} derived from the axiom.
$L_{\mathcal{G}}=L_{\mathcal{G}}(S)$
For instance ()$\in L_{\mathcal{G}_{2}}: S \rightarrow(S) S \rightarrow() S \rightarrow()$ as well as $((())),()()(),((()()())) \ldots$
but $)()\left(\notin L_{\mathcal{G}_{2}}\right.$, even though the following is a licit derivation :
$) S(\rightarrow)(S) S(\rightarrow$

Engendered language

Def. 15 (Language engendered by a word)
Let $f \in(\Sigma \cup N)^{*}$.
$L_{\mathcal{G}}(f)=\left\{g \in X^{*} / f \xrightarrow{\mathcal{G}_{*}^{*}} g\right\}$
Def. 16 (Language engendered by a grammar)
The language engendered by a grammar \mathcal{G} is the set of words of Σ^{*} derived from the axiom.
$L_{\mathcal{G}}=L_{\mathcal{G}}(S)$
For instance ()$\in L_{\mathcal{G}_{2}}: S \rightarrow(S) S \rightarrow() S \rightarrow()$ as well as $((())),()()(),((()()())) \ldots$
but $)()\left(\notin L_{\mathcal{G}_{2}}\right.$, even though the following is a licit derivation :
$) S(\rightarrow)(S) S(\rightarrow)() S(\rightarrow$

Engendered language

Def. 15 (Language engendered by a word)
Let $f \in(\Sigma \cup N)^{*}$.
$L_{\mathcal{G}}(f)=\left\{g \in X^{*} / f \xrightarrow{\mathcal{G}_{*}^{*}} g\right\}$
Def. 16 (Language engendered by a grammar)
The language engendered by a grammar \mathcal{G} is the set of words of Σ^{*} derived from the axiom.
$L_{\mathcal{G}}=L_{\mathcal{G}}(S)$
For instance ()$\in L_{\mathcal{G}_{2}}: S \rightarrow(S) S \rightarrow() S \rightarrow()$ as well as $((())),()()(),((()()())) \ldots$
but $)()\left(\notin L_{\mathcal{G}_{2}}\right.$, even though the following is a licit derivation :
$) S(\rightarrow)(S) S(\rightarrow)() S(\rightarrow)()($

Engendered language

Def. 15 (Language engendered by a word)
Let $f \in(\Sigma \cup N)^{*}$.
$L_{\mathcal{G}}(f)=\left\{g \in X^{*} / f \xrightarrow{\mathcal{G}_{*}^{*}} g\right\}$
Def. 16 (Language engendered by a grammar)
The language engendered by a grammar \mathcal{G} is the set of words of Σ^{*} derived from the axiom.
$L_{\mathcal{G}}=L_{\mathcal{G}}(S)$
For instance ()$\in L_{\mathcal{G}_{2}}: S \rightarrow(S) S \rightarrow() S \rightarrow()$ as well as $((())),()()(),((()()())) \ldots$
but $)()\left(\notin L_{G_{2}}\right.$, even though the following is a licit derivation :
)S(\rightarrow)(S)S(\rightarrow)()S(\rightarrow)()(
for there is no way to arrive at) S (starting with S.

Formal Languages and Linguistics
$\left\llcorner_{\text {Formal Grammars }}\right.$
Definition

Example

$$
G_{4}=E \rightarrow E+T|T, T \rightarrow T \times F| F, F \rightarrow(E) \mid a
$$

$$
a+a, a+(a \times a), \ldots
$$

Proto-word

Def. 17 (Proto-word)
A proto-word (or proto-sentence) is a word on $(\Sigma \cup N)^{*} N(\Sigma \cup N)^{*}$ (that is, a word containing at least one letter of N) produced by a derivation from the axiom.

$$
\begin{aligned}
& E \rightarrow E+T \rightarrow E+T * F \rightarrow T+T * F \rightarrow T+F * F \rightarrow \\
& T+a * F \rightarrow F+a * F \rightarrow a+a * F \rightarrow|A| * \mid A\| \| A
\end{aligned}
$$

Multiple derivations

A given word may have several derivations:
$E \rightarrow E+E \rightarrow F+E \rightarrow F+F \rightarrow 3+F \rightarrow 3+4$

Multiple derivations

A given word may have several derivations:

$$
\begin{aligned}
& E \rightarrow E+E \rightarrow F+E \rightarrow F+F \rightarrow 3+F \rightarrow 3+4 \\
& E \rightarrow E+E \rightarrow E+F \rightarrow E+4 \rightarrow F+4 \rightarrow 3+4
\end{aligned}
$$

Multiple derivations

A given word may have several derivations:
$E \rightarrow E+E \rightarrow F+E \rightarrow F+F \rightarrow 3+F \rightarrow 3+4$
$E \rightarrow E+E \rightarrow E+F \rightarrow E+4 \rightarrow F+4 \rightarrow 3+4$
... but if the grammar is not ambiguous, there is only one left derivation:

Multiple derivations

A given word may have several derivations:
$E \rightarrow E+E \rightarrow F+E \rightarrow F+F \rightarrow 3+F \rightarrow 3+4$
$E \rightarrow E+E \rightarrow E+F \rightarrow E+4 \rightarrow F+4 \rightarrow 3+4$
... but if the grammar is not ambiguous, there is only one left derivation:

$$
\underline{E} \rightarrow \underline{E}+E \rightarrow \underline{F}+E \rightarrow 3+\underline{E} \rightarrow 3+\underline{F} \rightarrow 3+4
$$

Multiple derivations

A given word may have several derivations:
$E \rightarrow E+E \rightarrow F+E \rightarrow F+F \rightarrow 3+F \rightarrow 3+4$
$E \rightarrow E+E \rightarrow E+F \rightarrow E+4 \rightarrow F+4 \rightarrow 3+4$
... but if the grammar is not ambiguous, there is only one left derivation:
$\underline{E} \rightarrow \underline{E}+E \rightarrow \underline{F}+E \rightarrow 3+\underline{E} \rightarrow 3+\underline{F} \rightarrow 3+4$
parsing: trying to find the/a left derivation (resp. right)

Derivation tree

For context-free languages, there is a way to represent the set of equivalent derivations, via a derivation tree which shows all the derivation independantly of their order.

Structural analysis

Syntactic trees are precious to give access to the semantics

Ambiguity

When a grammar can assign more than one derivation tree to a word $w \in L(G)$ (or more than one left derivation), the grammar is ambiguous.
For instance, \mathcal{G}_{3} is ambiguous, since it can assign the two follwing trees to $1+2 \times 3$:

About ambiguity

- Ambiguity is not desirable for the semantics
- Useful artificial languages are rarely ambiguous
- There are context-free languages that are intrinsequely ambiguous (1)
- Natural languages are notoriously ambiguous...
(1) $\quad\left\{a^{n} b a^{m} b a^{p} b a^{q} \mid(n \geqslant q \wedge m \geqslant p) \vee(n \geqslant m \wedge p \geqslant q)\right\}$

Comparison of grammars

- different languages generated \Rightarrow different grammars
- same language generated by \mathcal{G} and \mathcal{G}^{\prime} :
\Rightarrow same weak generative power
- same language generated by \mathcal{G} and \mathcal{G}^{\prime}, and same structural decomposition :
\Rightarrow same strong generative power

Formal Languages and Linguistics

$\left\llcorner_{\text {Formal complexity of Natural Languages }}\right.$
-Are NL context-sensitive?

References I

Bar-Hillel, Yehoshua, Perles, Micha, \& Shamir, Eliahu. 1961. On formal properties of simple phrase structure grammars. STUF-Language Typology and Universals, 14(1-4), 143-172.
Chomsky, Noam. 1957. Syntactic Structures. Den Haag: Mouton \& Co.
Chomsky, Noam. 1995. The Minimalist Program. Vol. 28. Cambridge, Mass.: MIT Press.
Gazdar, Gerald, \& Pullum, Geoffrey K. 1985 (May). Computationally Relevant Properties of Natural Languages and Their Grammars. Tech. rept. Center for the Study of Language and Information, Leland Stanford Junior University.
Gibson, Edward, \& Thomas, James. 1997. The Complexity of Nested Structures in English: Evidence for the Syntactic Prediction Locality Theory of Linguistic Complexity. Unpublished manuscript, Massachusetts Institute of Technology.
Joshi, Aravind K. 1985. Tree Adjoining Grammars: How Much Context-Sensitivity is Required to Provide Reasonable Structural Descriptions? Tech. rept. Department of Computer and Information Science, University of Pennsylvania.
Langendoen, D Terence, \& Postal, Paul Martin. 1984. The vastness of natural languages. Basil Blackwell Oxford.
Mannell, Robert. 1999. Infinite number of sentences. part of a set of class notes on the Internet. http://clas.mq.edu.au/speech/infinite_sentences/.
Schieber, Stuart M. 1985. Evidence against the Context-Freeness of Natural Language. Linguistics and Philosophy, 8(3), 333-343.
Stabler, Edward P. 2011. Computational perspectives on minimalism. Oxford handbook of linguistic minimalism, 617-643.
Steedman, Mark, et al. . 2012 (June). Combinatory Categorial Grammars for Robust Natural Language Processing. Slides for NASSLLI course http://homepages.inf.ed.ac.uk/steedman/papers/ccg/nasslli12.pdf.
Vijay-Shanker, K., \& Weir, David J. 1994. The Equivalence of Four Extensions of Context-Free Grammars. Mathematical Systems Theory, 27, 511-546.

